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Abstract. In this study we examine the stiffness properties of heterogeneous elastic materials and their degrad-
ation at different levels of observations. To this end we explore the opportunities and limitations of multiresol-
ution wavelet analysis, where successive Haar transformations lead to a recursive separation of the stiffness
properties and the response into coarse- and fine-scale features. In the limit, this recursive process results in
which are immersed in a hardened cement paste taking due account of the mismatch of the two elastic constituents.

Sommario. In questo studio si esaminano le proprietà di rigidezza di materiali elastici eterogenei ed il loro
degrado a diverse scale di osservazione. A questo scopo si esplorano le opportunità e le limitazioni di analisi
con wavelets a risoluzione multipla, dove successive trasformazioni di Haar conducono ad una separazione ri-
corsiva delle proprietà della rigidezza e della risposta nelle loro caratteristiche di scala fine e grossolana. Al
limite, questo processo ricorsivo dà luogo ad un parametro di omogeneizzazione che rappresenta una misura
media della rigidezza e della capacità di immagazzinare energia di deformazione alla grande scala. Il concetto
di base dell’analisi a risoluzione multipla è illustrato per mezzo di problemi modello mono- e bi-dimensionali
che si riferiscono ad un composito particolato a due fasi rappresentativo della morfologia del calcestruzzo. Le
caratteristiche microstrutturali del calcestruzzo sono modellate nello studio computazionale sotto forma di un
sistema a due materiali di particelle aggregate, immerse in una pasta di cemento indurita e tenendo conto della
mancata congruenza tra i due costituenti elastici.
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(a) Multi-Physics Interaction: Deterioration of materials is induced by the mismatch of the
constituents in heterogeneous materials and environmental factors, which include temper-
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2. Partitioning

Aside from the challenge of modeling progressive damage, there are several significant math-
ematical issues which are central to the entire field of deterioration analysis. One of them deals
with upscaling the fine resolution of heterogeneities to the coarse system of homogenized
materials. The other deals with the loss of positive material properties when damage and
degradation takes place at the fine level of observation and its manifestation at the coarse level
of homogenization.

2.1. TWO-SCALE SCALE ANALYSIS

The mathematical background of deterioration analysis centers around two concepts, (i) par-
titioning of the algebraic/differential system which turns increasingly ill-conditioned as the
elastic stiffness properties deteriorate, and (ii) measuring deterioration in space and time in
terms of effective damage measures at different scales.

Partitioning dates back to early work of Schur (1917) who among many important contribu-
tions to matrix analysis decomposed the solution domain into non-overlapping subdomains.
In the elementary example of a linear algebraic problem the unknown solution vector rrr is
decomposed into two groups of unknowns rrr1, rrr2, which describe the coarse and fine scale
response in the case of wavelet transformations discussed later on.[

KKK11 KKK12

KKK21 KKK22

] [
rrr1

rrr2

]
=

[
fff 1

fff 2

]
. (1)

In the case of environmental and mechanical deterioration, the solution domain decomposes
naturally into:�
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a ‘size-effect’ which transports localized defects from the micro-scale of observation
to the macro-scale of homogenized continua which differs, however, from the fracture
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Figure 1. Deterioration due to element erosion in one-dimensional bar structure, EA/L= 1.

of the intermediate element are deteriorating progressively according to the traditional format
of scalar damage

σ = Esε where Es = [1 − DE]Eo with DE = 1 − Es

Eo

. (6)

Here Eo denotes the initial intact elastic modulus of elasticity, and DE indicates the level of
damage as a measure of the secant to the initial stiffness ratio. Considering different values of
damage, 0 �DE � 1, Figure 2 illustrates the effect of material deterioration in the intermediate
element on the spectral properties of the structure. In the present case of scalar damage, the
element secant stiffness deteriorates proportionally to the material damage, that is

kkks = [� − DE]EoA

L

[
1 −1

−1 1

]
, (7)

where EoA/L = 1. Though the non-zero element eigenvalue decreases proportionally with
progressive material damage, λk = [1 − DE]EoA/L, we observe in Figure 2(a) that deteri-
oration at the structural level leads to non-proportional deterioration of all three eigenvalues.
Normalization or rather pre-conditioning with the intact flexibility matrix KKK−1

o separates the
damage according to the rank-one update argument above, and leads to the spectral properties
shown in Figure 2(b). We recognize, that pre-conditioning isolates the damage into a single

Figure 2. Three bar problem: variation of (a) eigenvalues, (b) normalized eigenvalues of structural assembly.
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(c) they introduce compact representation: the coefficients of a wavelet transfomation will
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Figure 6. The Haar wavelet basis.

Figure 6 illustrates the sequence of scaling and wavelet transformations of three reductions
by summing and differencing the unit step functions.

As previously mentioned, �j is the basis for Vj. Applying Equations 10 and 11 with j = 3 to
the functions φ3k(t) = φ(23t−k), k = 0, · · · , 7 yields the functions φ2k(t) = φ(22t − k), k =
0, · · · , 3 and ψ2k(t) = ψ(22t − k), k = 0, · · · , 3.

In general, the Haar wavelet basis of Vj contains 2j functions.

4. Multiresolution Homogenization

There are many important physical problems which incorporate several scales of observa-
tion. In heterogeneous media we typically encounter fine (microscopic) scale and coarse
(macroscopic) scale features. Typically, ‘homogenization’ methods require that the fine scale
behavior is fairly well separated from the behavior on the coarse scales. Recently, a multiresol-
ution analysis (MRA) has been proposed by Beylkin and Coult (1998) for homogenizing
the transition between adjacent scales. This recursive procedure involves sequential steps of
reduction as opposed to reconstruction, which may be repeated over many scales.

The basic step of the reduction involves computing a Schur complement which plays
an important role in algebraic multigrid and domain decomposition methods. Thereby, the
form of equations is fully preserved so that one can use the reduction step in a recursive
manner.

The main idea of the MRA scheme is illustrated best with the linear algebraic example

KKK rrr = fff , (20)

where KKK is a matrix of size 2n × 2n. We change basis by an orthogonal transformation with
the discrete Haar transform by writing,

rrrs = 1√
2
(rrr2k+1 + rrr2k) and rrrd = 1√

2
(rrr2k+1 − rrr2k) (21)

for k = 0, · · · , 2n−1 − 1. The elements of rrrs are essentially averages of neighboring entries
in rrr (they have an extra factor

√
2 when compared with true averages) and the elements
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of rrrd are differences. We can write the discrete Haar transform as a matrix MMMn of size
2n × 2n:

MMMn = 1√
2




1 1 0 0 · · ·
0 0 1 1 0 0 · · ·

. . .

−1 1 0 0 · · ·
0 0 −1 1 0 0 · · ·

. . .



. (22)

If we denote the top half of MMMn by PPPn and the bottom half by QQQn, then

MMMt
nMMMn = MMMnMMM

t
n = QQQt

nQQQn +PPP t
nPPP n = III and QQQnQQQ

t
n = III = PPPnPPP

t
n. (23)

Splitting the linear system in Equation 20 into two sets of equations in the two unknowns,
PPPnrrr = rrrs and QQQnrrr = rrrd , and applying PPPn to both sides, we get after dropping subscripts,

PPPKKKrrr = (PPPKKKPPP t)PPPrrr + (PPPKKKQQQt)QQQrrr = PPPfff . (24)
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where

KKKss = PPPn−jKKKjPPP
t
n−j , KKKsd = PPPn−jKKKjQQQ

t
n−j ,

KKKds = QQQn−jKKKjPPP
t
n−j , KKKdd = QQQn−jKKKjQQQ

t
n−j .

(31)

This recursion process involves only the matrices KKKj and the vector fff j . In other words,
we do not have to solve for rrr at any step in the reduction procedure. If we apply this reduction
process n times, we obtain a ‘scalar′
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Figure 7. MRA reduction procedure.

The ellipticity estimate of Equation 35 raises the important question under which condi-
tions do the lower eigenvalues of KKKj coincide with the eigenvalues of RRRj and how close are
the upper bounds. Clearly, the answer to this question depends on how well the fundamental
modes of the unreduced system are captured by the reduced system.

6. Homogenization of Two-phase Particle Composites

In what follows we consider the homogenization of a two-phase particle composite which
is made up of elastic aggregate inclusions which are embedded in an elastic matrix. For
illustration we compare homogenization via MRA in one- and two-dimensions in order to
assess the validity of the homogenization parameter and its bounding property when compared
to averaging the numerical FEM results.

6.1. ONE-DIMENSIONAL MODEL PROBLEM

To start with we consider a periodic arrangement of stiff particles and weak matrix constituents
in the one-dimensional simulation model shown in Figure 8, for which analytical solutions are
readily available from homogenization.

Assuming linear elastic behavior of the two materials with a contrast ratio of the stiffness
properties Ea/Em = 3 with Em = 10, the spectral properties of the ndof = 26 = 64
simulation with 64 bar elements of size h = 1 range from λmin = 8.82701 × 10−3 to

Figure 8. One-dimensional axial bar problem made of periodic two-phase material.
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Figure 9. One-dimensional axial bar problem: (a) upper bound properties of minimum eigenvalues at different
cycles of reduction in one-dimensional, (b) variation of minimum eigenvalue of stiffness, KKKo and KKK6 due to
progressive deterioration of aggregate stiffness.

λmax = 7.
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Figure 12. One-dimensional axial bar problem, density plot of stiffness matrix: (a) KKK3 ∈R8, (b) MMM1KKK1
MMMt

1 ∈ R1.

In short, MRA provides a homogenized stiffness property which reproduces exactly the
average response for a given load scenario, whereby the resulting homogenization parameter
maintains a close upper bound of the lowest eigenvalue of the unreduced bar structure.

6.2. TWO-DIMENSIONAL MODEL PROBLEM

In what follows we consider homogenization of the two-phase particle composite in two-
dimension as indicated in Figures 13(a) and (b).

Assuming isotropic linear elastic behavior of the two materials with a contrast ratio of
the stiffness properties Ea/Em = 3 and νa/νm = 0.5, the spectral properties of the ndof =

Figure 13. Two-dimensional composite structure: (a) overall mesh (b) aggregates mesh.
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Figure 14. Two-dimensional composite structure, density plot of stiffness matrix: (a) KKK7 ∈ R128, (b) MMM7KKK7
MMMt

7 ∈ R128.

210 = 1024 simulation range from λmin = 5.293 × 10−2 to λmax = 2.125 × 102. Given the
volume fraction of the aggregate particles, Va = 0.346917, the Hashin–Shtrikman bounds of
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Figure 16. Two-dimensional composite structure, density plot of separating x-, y-stiffness coefficients: (a) MMM2
KKK2MMM

t
2 ∈ R4, (b) MMM1KKK1MMM

t
1 ∈ R2.

the absolute magnitude of the stiffness coefficients in the coarse and fine partitions at different
levels of observation.
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