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An efficient and accurate analytic gradient method is presented for Hartree–Fock and density
functional calculations using multiresolution analysis in multiwavelet bases. The derivative is
efficiently computed as an inner product between compressed forms of the density and the
differentiated nuclear potential through the Hellmann–Feynman theorem. A smoothed nuclear
potential is directly differentiated, and the smoothing parameter required for a given accuracy is
empirically determined from calculations on six homonuclear diatomic molecules. The derivatives
of N2 molecule are shown using multiresolution calculation for various accuracies with comparison
to correlation consistent Gaussian-type basis sets. The optimized geometries of several molecules
are presented using Hartree–Fock and density functional theory. A highly precise Hartree–Fock
optimization for the H2O molecule produced six digits for the geometric parameters.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1768161#

I. INTRODUCTION

In a previous work,1 we described a practical,
multiresolution2,3 solver in multiwavelet bases for the all-
electron local density approximation~LDA ! Kohn–Sham4

equations for molecules, and elsewhere5 describe the inclu-
sion of Hartree–Fock exchange. These works employed and
extended the approach described in Ref. 6 for the solution of
integral and partial differential equations. In this paper, we
extend the approach to include computation of analytic
derivatives of the energy with respect to the atomic
coordinates.

These derivatives play very important roles in molecular
electronic structure calculations. They enable efficient opti-
mization of molecular structures, as pioneered by Pulay,7,8

may be combined using numerical finite difference to obtain
harmonic vibrational spectra and anharmonic corrections,
and are increasingly employed inab initio molecular dynam-
ics simulations.9,10 Since these derivatives have to be com-
puted at many geometries on the potential surface for the
purpose of geometry optimizations or molecular dynamics, a
fast analytic gradient method is crucial. In the widely used
ab initio molecular calculations using Gaussian functions,
the derivatives of many one- and two-electron integrals must
be computed7,8,11which add greatly to the computational ex-
pense and software complexity of these programs. For this
reason, mostab initio molecular dynamics have been con-
ducted, as recommended by Car and Parrinello,9 using plane
wave basis sets for which the computation of analytic deriva-
tives is very efficient. However, plane wave bases are global
and not adaptive, and so cannot be efficiently applied di-
rectly to all-electron systems and are inefficient when ap-
plied to isolated molecules and surfaces.

We chose to use multiwavelet bases, specifically those of
Alpert12–14 which are constructed from Legendre or interpo-

lating polynomials defined on disjoint intervals. This ap-
proach is closely related to discontinuous spectral element
methods.15 Our selection has been motivated by a number of
contradictory requirements for the basis~see Ref. 6!. In par-
ticular, we require orthonormality, the interpolating property,
and the ability to accommodate boundary conditions while
maintaining both accuracy and the order of convergence. It
turns out, that there are no smooth bases that satisfy all of
these conditions. Unexpected positive consequences of using
multiwavelets with disjoint supports include a family of de-
rivative operators with analogs of forward and backward dif-
ferences, and a useful connection to the so-called discontinu-
ous finite~or spectral! element methods.

The multiresolution constructions employed in this paper
are now fairly standard within the mathematical literature
~see, e.g. Refs. 2, 6, 13!, and a nonrigorous description for
chemists is given in an Appendix of Ref. 1. Many objectives
of the approach are accomplished, at least in one dimension,
are by a few central features of the multiresolution represen-
tations. However, additional features are necessary to
achieve efficient algorithms in higher dimensions.16,17

• Multiresolution wavelet and multiwavelet expansions
organize functions and operators efficiently in terms of
proximity on a given scale and between the length
scales.

• Simple and efficient algorithms exist to transform be-
tween representations at different scales@O~N! decom-
position and reconstruction#.

• There is a simple truncation and adaptive refinement
mechanism to maintain the desired accuracy.

• A large, physically significant class of differential and
integral operators is sparse in wavelet/multiwavelet
bases. High-order convergence is achieved for solving
partial differential and integral equations.
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• Multiwavelet bases with disjoint support allow us to
maintain high-order convergence in the presence of
boundary conditions or singularities.

A critical aspect for the efficiency of our approach is the
explicit trade-off between precision and speed. All computa-
tions are performed to a user-selected, finite but mathemati-
cally guaranteed precision. This guarantee is essential for
robust computation.

Maintaining precision in the functions near the nucleus
is important especially for the present study. The automatic
adaptive refinement mechanism can efficiently represent the
cusps in orbitals or nuclear potentials at nuclei located at
dyadic points on the adaptive mesh, so that the accuracy and
high-order convergence are maintained. If the nuclei are dis-
placed away from dyadic points, the higher-order conver-
gence for orbitals or potentials breaks down near the nucleus,
and many additional levels of adaptive refinement are carried
out to deliver the required precision. The previous study
demonstrated the translational invariance of the total energy
within a given precision.1 We should again pay attention to
the aspect regarding the nuclear potentials on dyadic/
nondyadic points for the gradient calculation.

The well-known Hellmann–Feynman or electrostatic
theorem is obeyed in our chosen basis, up to the finite pre-
cision of the computation. The expectation value of the first-
order perturbation term in the Hamiltonian is identical to the
first derivative of the energy with respect to the parameter
determining the strength of the perturbation, e.g., the coordi-
nate here,

]E

]q
5 K ]Vext

]q L 1O~e!, ~1!

whereVext is the external potential~usually the sum of the
electron-nuclear and nuclear-nuclear potentials! and q is a
parameter~e.g., a nuclear coordinate!. The energy for varia-
tional models is quadratic in the error in the wave function
due to approximate solution of the equations, and the gradi-
ent is linear in this error. However, both the energy and the
gradient are linear in the basis truncation error. That is, ne-
glect of small coefficients in the basis expansion of the or-
bitals introduces an error linearly proportional to the trunca-
tion threshold. One main point of this paper is to analyze this
numerical error.

As a consequence of the Hellmann–Feynman theorem,
the derivative of energies can be calculated as an inner prod-
uct between the multiwavelet representations for a density
function and a differentiated nuclear attraction potential. We
straightforwardly exploit the multiresolution, multiwavelet
representation to calculate this product very efficiently. The
derivative of the nuclear potential is more singular than the
potential itself. In our first paper,1 we introduced a smoothed
nuclear attraction potential. The goals of this were to avoid
the projection~via numerical quadrature! of a singular func-
tion into the multiwavelet basis, and to reduce the number of
fine-scale levels of refinement for computational efficiency.
The smoothed potential has a single parameter that controls
the smoothing and was directly related to the error in the
total energy. The second topic of this paper is to examine
how this parameter controls the error in the gradient.

Although Dickson and Becke also demonstrated the ana-
lytic gradient method of Kohn–Sham~KS! calculations us-
ing Hellmann–Feynman theorem based on their numerical
quadrature approach,NUMOL,18 their approach aimed only at
the benchmark calculation of the local spin-density approxi-
mation



multiwavelets6,12–14in which he imposed the additional con-

Downloaded 30 Jul 2004 to 128.138.249.84. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



with corresponding potential

uFN~r !5
erf~r !

r
. ~20!

The corresponding smoothing parameter is thus relatedc
51/Ah to the nuclear size~width of the Gaussian!. However,
since this form does not have any vanishing moments, only
very small radii produce physically reasonable results~since
the error is first order!. The form with vanishing moments
permits the potential to be modified at much larger radii
since the errors are primarily second order. For example, a
smoothing parameter ofc50.26 atomic units for hydrogen
introduces only 0.1 millihartree error in the Hartree–Fock
energy of the hydrogen molecule with a bond length of 1.4
bohrs.

IV. ANALYTIC DERIVATIVES



the nuclei are not located at dyadic points, and to make the
potential differentiable. These conditions imply that the odd
derivatives of both the potential and the orbitals are zero at
the nuclei~for isolated spherical atoms!.

This pursuit of smoothness is in the spirit of effective
core potentials19 and, in particular, the pseudopotentials20

used in plane-wave calculations that yield smooth valence
pseudo-orbitals. If we are interested in the detailed electronic
structure near the nuclei, the structure of the cusp should be
retained in solving for the orbitals, but it is not necessary for
the gradient. Since the core orbitals are, in general, very
nearly spherically symmetric, they are expected to contribute
very little to the gradients.

B. Implementation

Our multiresolution solver@MADNESS ~Ref. 22!# is
implemented using@PYTHON ~Ref. 23!# for high-level control
and C/C11/FORTRAN for computationally intensive opera-
tions. The new gradient code we have added into the existing
HF/KS-SCF program is composed of the following three
parts.

~1! A C function to return a value of Eq.~25! at a given
3D coordinate.

~2! A single PYTHON statement to obtain a compressed
Function instance projecting the differentiated nuclear poten-
tial, Eq. ~25!, onto the multiwavelets.

~3! A single PYTHON statement to compute an inner
product, Eq.~22!,

grad=rho·inner(gradvnuc(i,p))#i:

atom index, p: dx,dy,dz

In comparison with conventional Gaussian gradient codes
including atomic orbital integral routines,7,8,11 this imple-
mentation is much simpler and smaller—in total only a few
dozen extra lines of code. Symmetry can be exploited in our
gradient code, and its implementation will be reported in
detail in another paper regarding overall use of symmetry in
MADNESS.

V. RESULTS

A. Dependence of accuracy
on the smoothing parameter

The error in the derivatives arises from two sources, the
smoothing of the nuclear potential and numerical noise aris-
ing from truncation of small coefficients in the numerical
representations of the derivative potential and the orbitals
~and hence the density!,

]E

]XA
5^Cexact1du

]Vexact

]XA
1DuCexact1d& ~28!

5
]Eexact

]XA
12^du

]Vexact

]XA
uCexact&

1^CexactuDuCexact&1¯, ~29!

The dependence of the gradient on the smoothing param-
eter is expected to be systematic, as it is for the energy. The
numerical noise, however, is only controlled in a norm-wise
sense by the truncation threshold, and point-wise errors can
be much larger. Moreover, reduction of the numerical noise
in the orbitals requires either increased end-to-end precision
in the solution of the DFT equations, which is expensive, or
introduction of a postprocessing filter which is unsatisfac-
tory, though might still be of utility.

We examined the LSDA energy and gradients of six
homonuclear diatomic molecules, H2 , Li2 , B2 , N2 , O2 , and
F2 , near their equilibrium geometries. In computation of the
derivative, highly accurate KS orbitals were used with 11th
order multiwavelets, a truncation threshold of 1029, and
solving the KS equations to a residual of less than 1027 in
any orbital. Use of accurate solutions of the KS equations
eliminates solution error as a source of error in the gradient.
The box size was 40 bohrs. Two sets of computations were
performed. In the first, the nuclei were placed at dyadic
points—i.e., at below some level of refinement~between 5
and 7! the nuclei were placed at grid nodes. In the second,
the nuclei were placed at nondyadic points—i.e., at no level
of refinement would the nuclei be resolved to a grid node.
The geometries are listed in Table I together with the reso-
lution levelsn for dyadic points in a 40-bohr cube.

Figures 2 and 3 show the absolute errors of the deriva-
tives against the smoothing parameterc for the dyadic and
nondyadic geometries. The absolute error is defined relative
to the derivative computed with the smallest value of the

FIG. 1. Plots of the function 1/r , the smoothed functionu(r ) of Eq. ~16!,
and their derivatives 1/r 2 anddu/dr of Eq. ~26!.

TABLE I. The z coordinates of molecular geometries~in bohr! for the
homonuclear diatomic molecules, H2 , Li2 , B2 , N2 , O2 , and F2 given in the
derivative calculations with the box size 40 bohrs.

Molecule Dyadica Nondyadic

H2 60.625 000 00 (n56) 60.723 039 57
Li2 61.250 000 00 (n55) 61.445 312 50
B2 61.562 500 00 (n57) 61.537 486 44
N2 61.250 000 00 (n55) 61.034 345 97
O2 61.250 000 00 (n55) 61.132 812 50
F2 61.250 000 00 (n55) 61.307 434 97

aThe numbers in parentheses indicate the resolution levels of diadified ge-
ometries in the box.
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smoothing parameter c51024 as e(c)5udE/dX(c)
2dE/dX(c51024)u. Systematic reduction of the error as a
power function ofc was observed in the calculations at the
dyadic geometries~Fig. 2!. On the other hand, the deriva-
tives calculated at the nondyadic geometries were less accu-
rate than those at the dyadic geometries and systematic im-
provement was not observed—the errors were almost
constant for the molecules Li2 , B2 , O2 , F2 , and were higher
than the accuracy of the orbitals (1027) even for the small
smoothing parameters~Fig. 3!.

To explore the origin of this numerical noise, we note
that the electronic contribution to the derivative in some
sense measures the loss of spherical symmetry of an atom.
We examine loss of spherical symmetry in Fig. 4 for a single
magnesium atom at both dyadic and nondyadic points. To
measure this in both the density and numerical form of the
derivative potential we used these~anti-!symmetric relative
differences: ur(XMg2x)2r(XMg1x)u and udVe-nuc/
dXMg(XMg2x)1dVe-nuc/dXMg(XMg1x)u. A smoothing pa-
rameterc50.0005 was used, and the density and potential
were calculated withk59 wavelets with molecular orbitals
converged to a residual of 1025. The gradient values were
6310212hartree/bohr at the dyadic geometry and 4
31025 hartree/bohr at the nondyadic one.

Although the~anti-!symmetric difference of the density
and the differentiated potential of the atom should be zero
algebraically, the compressed density and potential for the
nondyadic geometry was much less accurate in relative error
than those for the dyadic geometry. The~anti-!symmetric
relative errors of the compressed density and the compressed



numerical errors in both the nonsymmetric density and dif-
ferentiated potential on the nondyadic geometry because the
rigorously symmetric expression of the density and deriva-
tive potential is important for cancellation in the integral of
Eq. ~22!.

We fitted the errors in diatomic gradients at dyadic to a
power of the smoothing parameterc as e(c)5acb using
least-squares fitting for two parametersa and b ~Table II!.
For the energy, perturbation theory suggests thatb53 and
the coefficient was previously determined1 by fitting to re-
sults for hydrogenic atoms—a50.004 35Z5Natoms. The ex-
ponentsb for the gradient, which were empirically obtained
separately for each atom, were also close to 3. Intuitively, it
is reasonable that the error in the gradient should have the
same exponent. The coefficientsa fitted for the gradient cal-



gradient calculations inNWCHEM version 4.1~Ref. 28! and
MADNESS. The CPU time was measured on a single 1.3 GHz
Power4 processor on IBM p690 system, andD2h symmetry
was used in both programs. The total CPU times for the
multiresolution calculations are composed of those to obtain
a density, compress the differentiated smoothed potential,
and compute the inner product between the density and the
differentiated smoothed potential, Eq.~22!. In the highly ac-
curate calculations, the multiresolution approach was even
faster than Gaussian calculations, even though our imple-
mentation was just a prototype. The precision obtained with

cc-pV5Z was reproduced with seventh multiwavelet bases
70–80 times faster. The scaling of CPU time against the
precision was much better with multiresolution calculations
than with Gaussian. This excellent lower scaling and the ca-
pability to produce very high precision up to 4.131027 im-
ply an extremely high adaptivity of our multiwavelet bases.
The CPU times for the inner products were shown to be
extremely minute. Comparing with two multiresolution cal-
culations to compress the differentiated nuclear potential
with e51025 and 1027 using seventh multiwavelets and
r (MOs),1025, the accuracies were similar. This result il-
lustrated that the smoothing of the nuclear potentials repro-
duced the sufficient accuracy.

C. Geometry optimization for several molecules
with comparison to NUMOL and aug-cc-pVTZ

Tables VI and VII present the molecular geometries op-
timized with LSDA and HF calculations, respectively, using
seventh and ninth order multiwavelets. The residuals of MOs
were less than 3.031025; the smoothing parametersc for
the smoothed nuclear potentials were chosen so as to yield a
total energy error ofe51026, and the box size was set as 40
bohrs. The tables include LSDA geometries reported by
Dickson and Becke usingNUMOL as LSDA limit,18 and
LSDA and HF geometries calculated with augmented cc-
pVTZ atom-centered Gaussian-type basis sets using
NWCHEM, along with experimental values. The tested mol-
ecules were selected from the compounds for which Dickson
and Becke optimized geometries in their paper, and include
both first- and second-row elements. The geometries deter-
mined by MADNESS were optimized with a quasi-Newton
Raphson algorithm using an approximated Hessian inverse
matrix updated with BFGS algorithm.29–32 During the opti-
mization, all geometries, except for the final one, were forced
to dyadic points within a millibohr displacement in any di-
rection for each atom.

Our LSDA geometries almost completely reproduced
NUMOL results with both the seventh and ninth order multi-
wavelets. The maximum discrepancies fromNUMOL with re-
spect to the bond length were 31 millibohrs for P2 in seventh
multiwavelet results~reduced to 1 millibohr for the ninth
order basis!, and 4 millibohrs for SiO in ninth multiwavelet
results. The averages were 2.0 millibohrs for seventh multi-
wavelets and 0.6 millibohrs for ninth multiwavelets. As to
the Gaussian LSDA results, the average discrepancy from
NUMOL was 3.4 millibohrs and the maximum error was 18
millibohrs for SiO. The ninth order multiwavelets yielded the
closest geometries toNUMOL, but the seventh order multi-
wavelets, which is much less computational demanding, still
gave better results than aug-cc-pVTZ.

In Table VII, we report corresponding HF geometry op-
timization results. For the linear CO, N2 , and HF molecules,
and the H2O molecule,MADNESS reproduced the past nu-
merical results33–38 within a millibohr.

The discrepancy between ninth order multiwavelets and
Gaussians was on average 4.0 millibohrs with the largest
error being 19 millibohrs for SiO. Noticeable errors were
found in the Gaussian results for second-row compounds in
both LSDA and HF calculations.

TABLE IV. The gradients and total energies~in hartree/bohr! of N2

molecule at r (NN)52.0 bohr with Gaussian basis sets and
multiresolution approach.

Calculation Gradienta Total energy

NWCHEM

cc-pVDZ 0.076 981 98 (5.031022) 2108.954 210
aug-cc-pVDZ 0.079 966 88 (5.331022) 2108.960 452

cc-pVTZ 0.033 701 06 (6.931023) 2108.986 281
aug-cc-pVTZ 0.033 036 33 (6.231023) 2108.987 529

cc-pVQZ 0.027 634 37 (7.931024) 2108.994 283
aug-cc-pVQZ 0.027 729 27 (8.931024) 2108.994 744

cc-pV5Z 0.026 961 89 (1.231024) 2108.996 009
aug-cc-pV5Z 0.026 818 90 (2.131025) 2108.996 191

MADNESS

k55,r (MOs),1023,e51024 0.028 193 27 (1.431023)
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D. High-precision Hartree–Fock geometry of water

Recently, Pahl and Handy reported a novel mixed basis
of plane waves and polynomial basis functions strictly local-
ized within disjoint spheres around the nuclei.38 Table VIII
compares Pahl’s HF geometry optimization on a water mol-
ecule with our multiresolution calculation employing high
precision. The precision of the optimization Pahl and Handy
estimated was an error in the total energy of 3 microhartree
with the box sizeL518.0 bohrs and the 30 polynomials, and
the geometry was converged to femtometer accuracy
(1025 Å) using a picohartree energy threshold for the total
energy. Our optimized geometry was obtained withk511,
e51029, and converging the orbitals to a residual less than
1028, with a box size of 40 bohrs. The geometry optimiza-
tion was performed until the maximum derivative was 1.7
31027 hartree/bohr and RMS of the derivatives 2.7
31027 hartree/bohr. The water molecule was translated ev-
ery iteration to put the oxygen atom at the center of the box
~a dyadic point!, but we did not force the hydrogen atoms to

dyadic points. The accuracy of the gradient of hydrogen is
better than 1028 even at the nondyadic points, as Fig. 3
shows. The accuracy of the optimization is expected to be
substantially better than that of Pahl, and no extrapolation is
necessary since we are able to use a large box size. The
differences between Pahl’s and the present results are 7
31026 bohrs, 431026 Å for r (OH), 0.0012° for/HOH,
and 1.031025 hartree for the total energy.



the additional effort to compute the analytic derivatives is
expected to grow with system size and precision according to
O„Natomln V ln(1/e)…, whereNatom is the number of atoms,V
is the system volume, ande is the required, finite precision.
The linear dependence on the number of atoms arises simply
from the need to compute the derivative of the potential for
each atom. Each of these derivatives is smooth both at long
range and very close to the nuclei, which, in the multireso-

lution representation and multiwavelet basis, results in the
logarithmic dependence upon both the volume and precision.

We directly differentiated our previous form of
smoothed nuclear potential, and values of the smoothing pa-
rameter that yield acceptable errors in total energy, were
shown to yield proportionately smaller errors in the gradient
based upon study of six homonuclear diatomic molecules.
This approach does not require additional smoothing param-

TABLE VIII. Highly precise Hartree–Fock geometry optimization for H2O.a

r (O-H) ~bohr! r (O-H! ~Å) /HOH Total energy~hartree!

MADNESS k511 1.775 575 0.939 594b 106.3375 276.068 180 09
Pahl and Handyc 1.775 582 0.939 598b 106.3387 276.068 170d

aug-cc-pVQZ Gaussian 1.775 972 0.939 804b 106.3286 276.066 676

aUnits are bohr for bond lengths and hartree for total energies.
bUnits are converted by a factor 0.529 177 249 from bohr to Å.
cReference 38.
dThe multiresolution approach produced the total energy276.068 180 hartree at Pahl’s geometry.

TABLE VII. Geometric parameters optimized with Hartree–Fock calculations.a

Molecule Parameter

Hartree–Fock geometry

Expt.b
MADNESS

k57
MADNESS

k59
NWCHEM

aug-cc-pVTZ
Nearly

HF-limit

H2 r (H-H) 1.386 1.386 1.388 ¯ 1.401
Li2 r (Li-Li) 5.264 5.259 5.260 ¯ 5.051
LiH r (Li-H) 3.035 3.035 3.038 ¯ 3.015
CO r (C-O) 2.081 2.082 2.086 2.081c 2.132
N2 r (N-N) 2.012 2.013 2.016 2.013c 2.074
Be2 r (Be-Be) ¯ ¯ ¯ ¯ 4.63
HF r (H-F) 1.695 1.695 1.699 1.696c 1.733
BH r (B-H) 2.305 2.305 2.308 ¯ 2.329
F2 r (F-F) 2.502 2.506 2.510 ¯ 2.668
P2 r (P-P) 3.495 3.493 3.510 ¯ 3.578
BH3 r (B-H) 2.243 2.243 2.244 ¯ 2.329
CH2 r (C-H) 2.068 2.068 2.069 ¯ 2.099

/HCH 103.8 103.8 103.8 ¯ 102.4
CH4 r (C-H) 2.043 2.044 2.045 2.048c 2.052
C2H2 r (C-C) 2.228 2.228 2.230 ¯ 2.274

r (C-H) 1.992 1.992 1.992 ¯ 2.005
C2H4 r (C-C) 2.484 2.484 2.484 ¯ 2.530

r (C-H) 2.029 2.029 2.030 ¯ 2.050
/CCH 121.8 121.8 121.6 ¯ 121.1

C2H6 r (C-C) 2.878 2.879 2.882 ¯ 2.876
r (C-H) 2.046 2.046 2.048 ¯ 2.058
/CCH 111.3 111.2 111.2 ¯ 111.8

NH3 r (N-H) 1.886 1.885 1.887 1.890c 1.912
/HNH 107.8 108.2 108.1 107.2c 106.7

H2O r (O-H) 1.776 1.776 1.778 1.776c 1.809
/HOH 106.3 106.4 106.3 106.3c 104.5

CO2 r (C-O) 2.146 2.144 2.147 ¯ 2.192
H2CO r (C-O) 2.226 2.223 2.227 ¯ 2.279

r (C-H) 2.064 2.064 2.065 ¯ 2.094
/OCH 122.0 122.0 121.9 ¯ 121.7

SiH4 r (Si-H) 2.785 2.785 2.793 ¯ 2.795
SiO r (Si-O) 2.788 2.788 2.807 ¯ 2.853
PH3 r (P-H) 2.653 2.653 2.660 ¯ 2.671

/HPH 95.7 95.7 95.6 ¯ 93.45
HCP r (P-C) 2.849 2.849 2.860 ¯ 2.910

r (C-H) 2.005 2.006 2.006 ¯ 2.020

aUnits are bohr for bond lengths.
bExperimental references in Ref. 18.
cCO for Ref. 33, N2 for Ref. 34, HF for Ref. 35, CH4 for Ref. 36, NH3 for Ref. 37, and H2O for Ref. 38.
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eters. It has been implemented into the existing prototype
multiresolution HF/KS-SCF solverMADNESS, and demon-
strated as practical by reproduction within available digits of
the LSDA basis set limit results of Dickson and Becke
NUMOL. The discrepancy of LSDA and HF geometries be-
tween ninth multiwavelets and aug-cc-pVTZ bases was on
an average 3–4 millibohrs for bond lengths, and was greater
in second-row compounds by a few dozen millibohrs.

Also reported was a high-precision HF geometry for the
water molecule. Our calculation improved upon the previous
best result of Pahl and Handy by 731026 bohrs, 4
31026 Å for r (OH), 0.0012° for /HOH, and 1.0
31025 hartree for the total energy. The accuracy of our ge-
ometry is estimated from the gradients and Hessian at the
optimized geometry to be within 231027 bohr, 131027 Å
for r (OH), and within13 1077r


