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For some time now, learning progressions (LPs), which are descriptions of the 

developmental path that students are likely to take when learning the concepts in a given domain 

(Clements & Sarama, 2004), have been viewed as a promising means of coordinating three 

elements that are critical to student learning: curriculum, instruction and assessment (Clements & 

Sarama, 2004; Lobato & Walters, 2017). By emphasizing the 
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multiple-choice  tests for this purpose1. The i-Ready Diagnostic, for example, provides a list of 

�³�F�D�Q-�G�R�¶�V���D�Q�G���Q�H�[�W���V�W�H�S�V�´���E�D�V�H�G���R�Q��each student�¶s assessment scores that are meant to help 

�W�H�D�F�K�H�U�V���W�D�L�O�R�U���L�Q�V�W�U�X�F�W�L�R�Q���W�R���P�H�H�W���V�W�X�G�H�Q�W�V�¶���L�Q�G�L�Y�L�G�X�D�O���Q�H�H�G�V. While all instances of formative 

assessment, including these large-scale assessments, present opportunities for both providing 

feedback to students and adjusting instruction, the more immediate the adjustment, the stronger 

the impact on student learning is likely to be. There may, therefore, be a disconnect between the 

kinds of local, teacher- and researcher-developed assessments that are most frequently used in 

the development and validation of LPs (e.g., �$�U�L�H�O�L�(�$�W�W�D�O�L���	���&�D�\�W�R�Q�(�+�R�G�J�H�V�����������������:�L�O�N�L�Q�V���	��

Norton, 2018; Wright, 2014; Yulia et al., 2019), and the large-scale interim and summative 

assessments that are commonly used by teachers in K-12 public school settings in the United 

States. The former tend to allow for more immediate and iterative feedback during the learning 

process, while the latter are typically only administered a few times a year after learning has 

occurred. 

In this paper we address this disconnect by using the results from a widely used 

�F�R�P�P�H�U�F�L�D�O���D�V�V�H�V�V�P�H�Q�W�����&�X�U�U�L�F�X�O�X�P���$�V�V�R�F�L�D�W�H�V�¶��i-Ready Diagnostic, to support an LP for 

fractions. We present compelling empirical evidence to support the validity of this LP by taking 

advantage of i-Ready�¶�V���Y�H�U�W�L�F�D�O���V�F�D�O�H�����Z�K�L�F�K���D�O�O�R�Z�V���X�V���W�R���F�R�P�S�D�U�H���W�K�H���G�L�I�I�L�F�X�O�W�L�H�V���R�I���L�W�H�P�V��

designed for students in different grade levels. By using the vertical scale to investigate the 

relative difficulties of items that are more and less mathematically sophisticated, according to the 

LP, we provide an example where an LP can provide a productive structure for making sense of 

results of an externally mandated assessment. We note up front that although the research 

 
1 Three of the commercial assessments commonly purchased by U.S. school districts for this purpose are the MAP 
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presented in this study did occur within the context of a collaboration with Curriculum 

Associates that was intended to contribute to their ongoing efforts to improve upon their 

assessment and curricular products, our research team was given full autonomy in the 

development and validation efforts related to an LP for fractions.   

In what follows, we begin by situating our study within the curriculum and assessment 

context of the i-Ready Learning and i-Ready Diagnostic products that Curriculum Associates 

provides to school districts in the United States. We motivate our specific focus on an LP for the 

understanding of fractions, and then provide a summary of the results from our review of pre-

existing fraction LPs. We then introduce an LP that takes a slightly larger scope and grain-size 

than do the LPs found in the pre-existing mathematics education literature. Our intention in using 

this grain-size is to provide teachers with a handful of large categories that they can hold in their 

minds more effectively than a series of hyper-specific standards. Furthermore, it is easy to get 

bogged down in specifics and to focus on individual skills rather than on the concepts that 

underly those skills. Our intension in this work is to encourage teachers to focus on the big ideas 

�W�K�D�W���P�D�N�H���X�S���V�W�X�G�H�Q�W�V�¶���X�Q�G�H�U�V�W�D�Q�G�L�Q�J�V���R�I���I�U�D�F�W�L�R�Q�V���U�D�W�K�H�U���W�K�D�Q���W�K�L�Q�N�L�Q�J���R�I���I�U�D�F�W�L�R�Q�V���D�V���D���O�L�V�W���R�I��

facts and skills to be memorized and reproduced. 
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LP level. We conclude with a discussion about how the LP can be used to support formative 

inferences about student learning in classroom contexts that feature a combination of locally 

developed and externally mandated assessments. 

The Curriculum and Assessment Context 

 

The i-Ready Diagnostic assessment comprises two grade-specific standardized tests in 

reading and mathematics that are intended to be administered during the fall, the winter and the 

spring of each academic school year. Students take each test on a digital interface, and tests are 

designed to be adaptive such that each new multiple-choice item to which a student is exposed 

depends upon whether they answered prior items correctly. The mathematics test for students in 

grades K-12 consists of up to 66 items, and the content of these items is organized into four 

strands: Algebra, Geometry, Measurement, and Number and Operations. The test was developed 

to serve the following four purposes (Curriculum Associates, 2018, p. 8): 

1. Establish a metric that will allow for an accurate assessment of student knowledge that can 

be monitored over a period of time to gauge student improvement.  

2. Accurately assess student knowledge for different content strands within each subject.  

3. Provide information on what skills students are likely to have mastered and likely need to 

work on next.  

4. Link the assessment results to instructional advice and student placement decisions about 

�&�X�U�U�L�F�X�O�X�P���$�V�V�R�F�L�D�W�H�V�¶��i-Ready Instruction curricula and print products.  

�$���G�L�V�W�L�Q�J�X�L�V�K�L�Q�J���I�H�D�W�X�U�H���R�I���&�X�U�U�L�F�X�O�X�P���$�V�V�R�F�L�D�W�H�V�¶���D�S�S�U�R�D�F�K���W�R���Z�R�U�N�L�Q�J���Z�L�W�K���V�F�K�R�R�O���G�L�V�W�U�L�F�W�V���L�V��
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i-Ready Learning, a library of online instructional modules, and Ready Learning, a series of 

grade-specific printed books containing instructional lessons.  

Curricular priorities: The importance of fra ctions 

The reasoning skills that students typically develop with regard to fraction operations and 

equality in grades three through six help to build a sense of mathematical structure that facilitates 

the learning of more formal algebraic concepts later on (Common Core State Standards 

Initiative, 2010; Empson et al., 2011). In particular, students need to understand conceptually 

what fractions are and how they interact with one another (Byrnes & Wasik, 1991), which 

largely involves seeing fractions as real number values that can be placed at a unique point on a 

number line (Hansen et al., 2015; Siegler et al., 2011) and developing proportional reasoning and 

visualization skills (Hansen et al., 2015). There is also empirical evidence that students with a 

solid understanding of fractions are more likely to be successful in future mathematics 

coursework in middle school and beyond (Bailey et al., 2012; Booth & Newton, 2012; Siegler et 

al., 2012; Torbeyns et al., 2015).  

 Given the foundational nature of fractions understanding, we developed a learning 

progression for fractions that is meant to help students, teachers, and parents track student 

growth in this domain. During the development process, we reviewed existing LPs and the 

�E�U�R�D�G�H�U���O�L�W�H�U�D�W�X�U�H���D�U�R�X�Q�G���V�W�X�G�H�Q�W�V�¶���X�Q�G�H�U�V�W�D�Q�G�L�Q�J�V���R�I���I�U�D�F�W�L�R�Q�V as well as the Common Core State 

Standards for Mathematics (CCSS-M) and the curricular focus and ordering of the fractions-

related content in the i-Ready curriculum.  
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A review of pre-
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conceptualize fractions. �,�Q���:�U�L�J�K�W�¶�V��LP, students move through different levels of each 

conceptualization starting with (1) unit forming, followed by (2) unit coordinating, (3) 

equivalence, and (4) comparison. As we will describe in the following section, we take the four 

fraction conceptualizations to be part of our LP, and we argue that the four levels Wright 

presents actually map onto those conceptualizations. 

Wilkins and Norton (2018) published another fractions LP in which they proposed a 

hierarchy among the fraction schemes that Steffe and Olive (2010) put forward in their 

foundational book �R�Q���F�K�L�O�G�U�H�Q�¶�V���G�H�Y�H�O�R�S�P�H�Qt of fraction understandings. Wilkins and Norton 
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The final LP that we identified was produced by Yulia and colleagues (2019). They 

reviewed the extant literature to develop a hypothetical LP and associated tasks, which they 

checked with teachers participating in their study, then revised as needed. Validation of this LP 

consisted of classroom observations and task-focused cognitive interviews with 25 students in 

Indonesia. Their LP order is (1) fractions as a part-whole relationship, (2) determining fractional 

equivalence, (3) comparing fractional values, and (4) operating with fractions. 

The four LPs described above each provide valuable conjectures regarding the paths that 

students tend to take when learning about fractions. However, each LP features either a level or 

developmental conceptualization of fractions that is unique to that study. For example, the 

concepts of ratios and rates �D�U�H���R�Q�O�\���L�Q�F�O�X�G�H�G���L�Q���:�U�L�J�K�W�¶�V������014) work, and even then, they are 

treated as their own distinct construct through which students move rather than as an ordered 

level within a larger fractions construct. Furthermore, two of the LPs used qualitative methods 

with fairly small samples in local contexts ���$�U�L�H�O�L�(�$�W�W�D�O�L���	���&�D�\�W�R�Q�(�+�R�G�J�H�V�����������������<�X�O�L�D���H�W���D�O������

2019). It is also an open question whether the order implied by these pre-existing LPs has been 

sufficiently validated. For example, the LP by Wright (2014) used a small sample of only six 

students in one classroom and was unclear in describing how the patterns in test scores were 

identified. The LP by Wilkins & Norton (2018) had a larger and more geographically-diverse 

sample, but the assessment they used only contained four items for each of the four schemes that 

they investigated.  
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A New L
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form a coherent learning progression�² that they can be viewed as ordered levels of a single 

construct and that the level of sophistication with which a student can understand fractions and 

use this understanding to solve mathematical problems increases from one conceptualization to 

the next. The levels of the expected progression through this construct (from lowest to highest) 

are described in the following subsections and are also summarized in Table A-1 in the 

Appendix. 

Level 1: Fractions as parts of a whole 

The conceptualization that has historically been used to introduce students to fractions is 

the part-whole conception in which a whole is partitioned into equal parts and some of those 

parts are mentally disembedded (Moss, 2005; Steffe & Olive, 2010). This can take the form of 

one object being split into multiple parts, as in an area model in which a pizza, for instance, is cut 

into equal slices. Alternatively, it may consist of a set of objects, some fraction of which are 

specified (e.g., if there are three people sitting at a table set for four, then three-fourths of the 

seats are occupied). This conceptualization is representative of the first level in three of the four 

existing LPs that we identified ���$�U�L�H�O�L�(�$�W�W�D�O�L���	���&�D�\�W�R�Q�(�+�R�G�J�H�V�����������������:�L�O�N�L�Q�V���	���1�R�U�W�R�Q����������������

Yulia et al., 2019). Figure 1 is an example of a set model. In this item, there are five smiley  
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Figure 1. Example of a part-whole item 

 

faces, and the students are asked to identify which fraction of the whole set is shaded. In this 

case, 
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sense by counting wholes) (Moss, 2005). Students working within a part-whole framework may 

maintain their natural number context and apply the counting strategies that have served them 

well in other situations (Post et al., 1993).  

The part-whole conception of fractions is insufficient on its own for students to develop a 

complete understanding of fractions and the ways that they may be used (Hackenberg & Lee, 

2015; Post et al., 1993; Steffe & Olive, 2010). In particular, students who can identify both the 

total and the specified number of pieces in a fraction may not fully comprehend that all of the 

pieces must be equal or that the all of the original whole must be used when creating fractional 

pieces 
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Figure 2. Examples of inaccurate attempts at fair sharing 

 

claiming that 
�5�4

�5�9
P

�6

�7
 because �s�rP�t and �s�wP�u (Hart et al., 1981). These applications of 

natural-number logic may lead to difficult ies adding and subtracting fractions, even those with 

the same denominator, if students overgeneralize traditional operation procedures (e.g., adding 

across both the numerators and the denominators) (Newton, 2008; Post et al., 1993; Wu, 2001). 

In order to move past these obstacles, students must be able to view fractions as representing an 

equipartitioning process in which a whole is divided into equal parts. 

Level 2: Fractions as quotients 

 �7�K�H���Q�H�[�W���F�R�Q�F�H�S�W�X�D�O�L�]�D�W�L�R�Q���W�K�D�W���V�W�X�G�H�Q�W�V���Q�H�H�G���W�R���G�H�Y�H�O�R�S���L�V���W�K�H���R�I�W�H�Q���³�I�R�U�J�R�W�W�H�Q���Q�R�W�L�R�Q�´��

(Clarke, 2011) that a fraction is a quotient such that 
�Ô

�Õ
 represents the division of �= by �>. The key 

to this stage of understanding is the ability to engage in �H�T�X�L�S�D�U�W�L�W�L�R�Q�L�Q�J���D�Q�G���W�K�H���F�U�H�D�W�L�R�Q���R�I���³�I�D�L�U��

�V�K�D�U�H�V�´�����&�R�Q�I�U�H�\�����0�D�O�R�Q�H�\�����	���&�R�U�O�H�\�����������������&�R�Q�I�U�H�\�����0�D�O�R�Q�H�\�����1�J�X�\�H�Q�����H�W���D�O�������������������:�L�O�V�R�Q���H�W��

al., 2012). In fair sharing, the number of individual units to be shared (�=) is divided by the 

number of shares that are needed (�>) such that the size of each share is 
�Ô

�Õ
 (�=-�>ths) of one unit 

(Empson et al., 2006). The foundational example of this process is taking one unit and dividing it 
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objects were 
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values and need to create their own (Moss & Case, 1999). If a student, for example, were asked 

to locate 
�7

�<
 on the number line shown in Figure 4, they would need to split the areas between the 

one-fourth markings in half to create eights. 

A measurement conception of fractions is most important when students need to compare 

relative magnitudes of fractions with unlike numerators and denominators, usually in a context 

where they need to determine whether one fractional value is greater than, less than, or equal to 

another (Steffe & Olive, 2010). If a student does not see a fraction as representing a specific, 

orderable value, then they will 00912 tific, 
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Students need an accurate mental number line (Griffin, 2004; Hamdan & Gunderson, 

2017) and a sense of how quantities combine to form new quantities (Jordan et al., 2007) in order 

to develop fraction addition skills (Keijzer & Terwel, 2003). Having a sense of magnitude and 

additive properties allows students to reject implausible answers and the procedures that they 

used to obtain them (Booth & Siegler, 2008; Hiebert & Lefevre, 1986; Siegler et al., 2011). 

Understanding magnitude and number lines is also essential for comprehending the meaning of 

improper fractions. If a student were to only make use of a part-whole conception, it would make 
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Misunderstanding the direction of effects of fraction operations indicates that students 

may have simply memorized algorithms and do not yet fully understand what fraction 

multiplication and division mean conceptually. This is likely why students who have not 

mastered the operator conceptualization of fractions tend to have difficulty selecting procedures 

when solving proportion problems that are not simply presented as a symbolic missing value, 

such as 
�6

�;
L

�:

�ë
. Figure 6 presents one such problem. In this item, three friends are sharing the left-

over quarter of the cake such that they each get 
�5

�8
�Û

�5

�7
L

�5

�5�6
 of the original whole. This item 

requires students to recognize that they need to divide the left-over quarter of the cake into three 

equal pieces, which is the same as multiplying by 
�5

�7
. Similar items may change the context and 

the proportions involved. 
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 While all the existing LPs have levels that fit well within our defined levels, they are 

either missing one or more of the conceptualizations Kieren identified or are too focused on 

individual skills for our purposes.  The LP proposed by �$�U�L�H�O�L�(�$�W�W�D�O�L��and �&�D�\�W�R�Q�(�+�R�G�J�H�V��(2014) 

does have conceptually-based levels that cover the big ideas of a unit, fractions as numbers, and 

the additive and multiplicative structure of fractions, but it does not include levels that address 

�W�K�H���4�X�R�W�L�H�Q�W���R�U���5�D�W�L�R�V���X�Q�G�H�U�V�W�D�Q�G�L�Q�J�V�����<�X�O�L�D���H�W���D�O���¶�V����������������LP �K�D�V���V�L�P�L�O�D�U���O�H�Y�H�O�V�����:�U�L�J�K�W�¶s 

(2014) LP 
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Situating our learning progression 

 The learning progression that we have defined uses a combination of �W�K�H���³�F�R�J�Q�L�W�L�Y�H��

�O�H�Y�H�O�V�´���D�Q�G���³�G�L�V�F�L�S�O�L�Q�D�U�\���O�R�J�L�F���D�Q�G���F�X�U�U�L�F�X�O�D�U���F�R�K�H�U�H�Q�F�H�´��approaches to LP design, as described 

by Lobato and Walters (2017). Our approach is cognitive in the sense that we identify a series of 

increasingly sophisticated conceptions and in the conjecture that students develop these more 

sophisticated conceptions about fractions over time. This type of LP typically uses cross-

sectional data across several grade levels to help validate this conjecture, which is also the 

approach we take in our use of the i-Ready Diagnostic assessment data. Our approach is also 

based upon disciplinary logic and curricular coherence in that it �Z�D�V���³informed by research 

versus being the product of research�´��(emphasis in original, Lobato & Walters, 2017, p. 87). The 
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We �P�R�G�H�O���D���V�W�X�G�H�Q�W�¶�V��conceptual understanding of fractions as a location on a latent continuum 

that is assumed to remain relatively stable as a student is completing assessment items on any 

given occasion, and argue that a �S�H�U�V�R�Q�¶�V��location on this continuum can be inferred (with some 

amount of measurement error) through an analysis of their pattern of item responses.  

 

Validation Approach 

 

 In order to empirically test our hypothesized learning progression, we examined the 

relationship between our ordering of the levels of fractional knowledge described in the previous 

sections and the difficulty estimates 
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would have a 50% chance of giving a correct answer to an item with a difficulty rating of 350.   

More specifically, Curriculum Associates uses a vertical scale in which scores from assessments 

administered to non-equivalent groups of examinees, such as students in different grades, are 

placed onto a single scale so that, for example, a third grader and a fourth grader with the same 

numeric score on the i-Ready Diagnostic are interpreted as having demonstrated the same level 

of absolute proficiency despite having taken different diagnostic test items (for an overview of 

vertical scaling, see Tong & Kolen, 2010). For the i-Ready tests, this was done by 

administering common items across grade levels, and then using the information about student 

�S�H�U�I�R�U�P�D�Q�F�H���R�Q���W�K�H�V�H���L�W�H�P�V���W�R���H�V�W�D�E�O�L�V�K���D���³�Y�H�U�W�L�F�D�O�´���V�F�D�O�H���D�F�U�R�V�V���J�U�D�G�H�V����
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the estimated difficulties of the i-Ready Diagnostic items that assess the content covered in those 

lessons.  

 Content experts at Curriculum Associates coded the items in the i-Ready Diagnostic 

assessment system according to the specific content knowledge and skills that students are 

presumed to require to accurately complete the problem. Curriculum Associates refers to these 

codes as anchor claims. We identified 406 fractions items associated with 107 anchor claims. 

The first and third authors independently coded each anchor claim based on which of the five 

fraction conceptualizations from our LP would be 
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Table 2. Illustrative anchor claims and associated Ready Lessons3 
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Figure 7. Anchor claim LP levels by the order in which they appear in the Ready lessons 

by the Quotient, Measurement, Operator, and Ratio conceptualizations. The conceptual focus 

also shifts between the grades such that second grade is Part-Whole only and third grade 

introduces Quotient and Measurement concepts. Fourth grade is mostly Measurement and 

introduces Operator ideas. By fifth grade, students are mostly learning Operator concepts, and 

Ratios are introduced in sixth grade, with Operator ideas still strongly featured. There is an 

upward trend in the regression line shown in Figure 7, which was generated by coding the LP 

levels from 1-5 (part-whole = 1 and operator = 5). Because of the ordinal nature of our analysis, 

w�H���X�V�H�G���6�S�H�D�U�P�D�Q�¶�V���é��to examine the association between the LP levels and the lesson ordering 

using this numerical coding scheme. The value of �é was 0.68. This indicates a fairly strong 

relationship between the levels of fraction understanding that we have defined and the curricular 

ordering of the Ready curriculum. The correspondence would likely be even stronger if Ratios 
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were introduced sooner, as our evidence points to Ratio items being easier than Operation items 

in general despite being introduced later. 

We can see in Table 3 and Figure 8 that the difficulties of the i-Ready assessment items 

associated with anchor claims tend to increase when the conceptualizations are placed in the 

order in which they appear in our LP�����Z�L�W�K���D���6�S�H�D�U�P�D�Q�¶�V���é value of 0.55. The difficulties of the 

items associated with Ratios tend to be much more dispersed relative to those of the adjacent 

Measurement and Operator conceptualizatio51 203.5n
BT
/.80 0 1 248.85 597.9
BT
/F1 12 Tf
1 0 0 1 160.58 542.42 Tm
0 gp
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range of difficulties because of the Part-Whole aspects of this conceptualization, which are more 

similar to the lower-level conceptualizations. It is when the items move into the part-part rate 

ideas that the difficulties increase. This finding also aligns with previous research that has shown 

that students tend to begin building informal understandings of ratios and proportion fairly early, 

but it often takes quite a while for the formal ideas to develop (Bruner et al., 1966).  

 We ran an ANOVA to compare the means of the items in the LP level groups, and found 

that the differences in means were statistically significant [F(4, 401) = 52.27, p < .001]
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Using a Learning Progression for Formative Assessment 

 

Our analyses support the existence of a five-level, course-grained learning progression 

for fractions that, except for the Ratios conceptualization, aligns with the curricular ordering 

found in the CCSS-M (CCSSI, 2010) and in the Ready and the i-Ready curricular programs. This 

suggests that it is possible to use evidence from the large-scale diagnostic assessments that 

teachers are often required to administer to develop an LP that is consistent with existing LPs in 

the research literature that were developed using more locally developed assessments.  

LPs have the potential to serve as powerful assessment tools, as they may be used 

formatively by teachers during their informal interactions with students and in more formal 

classroom assessments that they may create (Clements et al., 2011; Clements & Sarama, 2008; 

Edgington, 2014; Furtak et al., 2014). Our intention in using a large grain-size for the LP was to 

allow teachers to more easily internalize a handful of levels that could serve as guideposts 
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There are, however, some conditions that must be met for LPs to be used effectively. 

First, the LP 
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This means that there may be items that were classified as representing aspects of a given level 

that also included other constructs.  This could have caused construct-irrelevant variance and 

skewed the difficulties of some items. 

 Another potential concern is whether our selected grain-size is useful to teachers in the 

way we expect it to be.  Our team will be conducting interviews with teachers who use the i-

Ready Diagnostic, and we intend to ask them whether these four levels make sense to them and 

would be helpful to guide their thinking and classroom practice. 
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Appendix 

Table A-1. Fraction conceptualizations learning progression 

Interpretation Student Characteristics Item Responses 
Operator Understands that: 

�x Multiplying a value by a fraction 
�Ô

�Õ
 results in a value 

that is �=�æ�>ths of the original value 
�x Understands the difference between multiplying and 

dividing fractions 

Is able to: 
�x Use multiplication to find a portion of a value 
�x Determine that multiplying a value by a fraction with 

magnitude less than 1 will result in a value with 
smaller magnitude and multiplying by an improper 
fraction will result in a value with larger magnitude, 
and vice versa for division, without performing the 
calculations 

�x  Divide a value by a fraction 

Ratio Understands that: 
�x Ratios may be expressed in various forms 

�@
�Ô

�Õ
�á�=�ã�>�á�����˜�‡�”�„�ƒ�Ž���†�‡�•�…�”�‹�’�–�‹�‘�•�á���‘�”���†�‹�ƒ�‰�”�ƒ�•���A 

�x Ratios may represent either part-whole or part-part 
relationships 

�x Ratios may represent rates 
�x Equivalent ratios may be created by multiplying both 

parts by the same value 
 

May not yet understand that: 
�x Multiplying a rate by a value can provide information 

about the overall situation (e.g., if a driver goes 
�:�9���•�‹�Ž�‡�•

�Š�‘�—�”
 for 3 hours, they have gone 

�:�9���•�‹�Ž�‡�•

�Š�‘�—�”
H

�u���Š�‘�—�”�•L �s�{�w miles) 
�x The direction of effects for fraction operations are 

not the same as they are for whole numbers 
 

Is able to: 
�x Identify part-whole and part-part relationships 
�x Move between the various representational forms for 

ratios and rates 
 
Common Errors: 
�x Selecting the wrong operation when solving 

problems involving proportional reasoning 
�x Indicating that multiplication always results in a 

larger value and that division always results in a 
smaller value 
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Measurement Understands that: 
�x Fractions represent unique numerical values 
�x Two fractions are equivalent if they represent the 

same numerical value 
�x Fractional values can be converted to decimals or 

percentages while maintaining their numerical value 
�x Improper fractions may be rewritten as mixed 

numbers and vice versa 
�x Fractions with different denominators may be 

compared or added if they are put into the same units 
 

May not yet understand that: 
�x  Fractions may be written as ratios and may represent 

part-part relationships or rates 

Is able to: 
�x Create and identify equivalent fractions, including 

converting between improper fractions and mixed 
numbers 

�x Order fractions and mixed numbers with different 
numerators and different denominators 

�x Add and subtract fractions and mixed numbers with 
different denominators 

 
Common Errors: 
�x Treating all ratios as part-whole 
�x Treating rates as two independent values with 

different units 

Quotient Understands that: 
�x �)�U�D�F�W�L�R�Q�D�O���S�D�U�W�V���P�X�V�W���E�H���H�T�X�D�O�����³�I�D�L�U���V�K�D�U�H�V�´�����E�X�W���P�D�\��

not appear the same 
�x The fraction 

�Ô

�Õ
 represents the division of �= by �> 

�x Unit fractions can be iterated to reproduce the 
original whole or part of the whole 

�x Dividing the same whole into more parts (larger 
denominator) results in smaller unit pieces 
 

May not yet understand that: 
�x A fraction has its own specific value that can be 

uniquely placed on a number line. 
�x
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�x Incorrectly comparing two fractions with different 
numerators and different denominators 

�x Not recognizing improper fractions as valid 
 

Part-Whole Understands that: 
�x A fraction represents a specified number of parts out 

of the total number of parts 
 

May not yet understand that: 
�x A whole must be partitioned equally 
�x All parts of the whole must be used when 

partitioning 

Is able to: 
�x Identify the number of specified and total parts in an 

area model or in a described situation. 
�x Compare fractions with the same denominator and 

different numerators 
 

Common Errors:  
�x 
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