STABILITY OF ATOMIC AND DIATOMIC HYDROCEN IN ICC PALLADIUM

Solar Energy Research Institute, Golden, CO 80401, USA (Received 26 September 1989 by A. A. Maradudin)

First-principles self-consistent total energy calculations for various

system is controlled by the relative position of the hydrogen-induced antibonding level with respect to the Fermi energy. Diatomic H2 in crystalline palladium is shown to have but metastable local minima whose internuclear separation are yet larger than that of the isolated H2 molecule.

	Recent claims of observation of room-tem-	In an attempt to further clarify some of
	13 12 (c) 1	
	born-oppendenser energy surrace h(k) of two deuterium atoms at a distance R, since both the vibrational wavefunction \(\psi(R) \) of diatomic deuterium [determining the fusion rate[3] A m	predict the stability of various periodic arrangements of atomic and diatomic hydrogen in fcc palladium. This approach, implemented by
K. E.	EUL - TAIL UN A TELEVISION OF THE SECOND	
		CORP. CHEST. CO. CO. CO. CO. CO. CO. CO. CO. CO. CO
,	rium distance R _{eg} for the isolated H ₂ molecule	motecute in any other orientation will
	ed	enopteneously securet close [111] Howaver 250
	machanian usus sought It use honed for	further lower its energy by dissociating into
<u> </u>	(e.g. fcc Pd) in which deuterium is embedded	separation. Subsequent penetration of the dit-
ę.	distance and enhance the fusion rate[5]. Some recent theoretical studies have addressed this question. Sun and Tomanek[6]	Bringing two such octahedrally positioned H atoms to the equilibrium internuclear separation of an isolated H ₂ molecule requires investment
	ueina e first-nrinciples pseudonotential	enecial k-points for Brillouin zone integrations
	U/DA makin the estabetrally centered H dimon	neeling makken shout intermedian distance
	that the cohesive energy has a local minimum at	Reducing the convergence error to below 0.1 eV
	1.34 eV/2H was positive. Using an emperical	kinetic energy cut-off of 21 Ry) and correspond-
	short range part of the H-H interaction is more	per H atom of a Pd-H structure with a hydrogen-

111 nu 1 - 1 prom 1, 1 prod 3, 1 pro (-) /2)	H/Pd ratio a
where g indicates gas and s indicates solid. In the absence of competing reactions, negative	2.5 Pd+H ^(g)
(instability) towards disproportionation into	2.3 Oct. (0.85 [001]
as against the last the same as of the	t, in Pd (.0.74 111)
treated non-relativistically). The binding	<u> </u>
lettice penetort - 1 1.00 lubore W is contened	I E LIAISI 1
This gives a molecular dissociation opener of	5: F Bd 4(6)1(9) 7
tional appear is her zero 56 off all to appearable	n I+I ZnS CaF ₂ / 1
since a large part of this convergence error is cancelled in calculating the energy difference	-0.60.45 NaCl
Our results for the relative energics of	
shown for convenience. DILUTE H IN PD: We model the small-α	Pd Concentration H/(Pd+H) 1/2 H (9)
octahedral (0) center of a cubic fcc Pd unit cell ($\alpha = 0.25$, Pd ₄ H, denoted as SC in Fig. 1).	with respect to Pd(s) and 1/2 H ₂ (g) or Pd(s) + H(g). Solid circles: stable phases; open
= -0.28 eV/H is exothermic; it is in fair agreement with the observed formation enthalpy of [12] ~-0.14 to ~0.16 eV/H. Examination of the electronic structure in this dilute limit reveals a simple physical picture. consistent	the bottom refers to compound name (stoichimetry), whereas the symbols SC, y etc. refer to their structures (see text). The results for
potential of H ⁺ pulls to lower energy those Pd	calculated at their respective equilibrium
rule"[16]), forming bonding H-Pd states near the	
shahar of myon Ad shabilican the guster On the	[at a(1/4.1/4.1/4), and a(3/4.3/4.3/4)] and a
rated to be hv . 1./ 10.2 cm /g-atom of h for	
Ep both destabilize the system. The balance is attractive for low a because the antibonding	of the O sites by hydrogen, forming the
hydrogen in Pd is found to be over-screened by	Pd_4H_2 of space group $I4_1$ /amd, or D_{4h} . Alter-
terration have by to U is house, he had to I all	GROWN CHE HILL MILECTION, TOTMANK CHE TAX
مسيوس مانساه ماه ها هماه الماه ماه المراه المراع المراه المراع المراه ال	at at a second
larger than for the covallent free-energ mole-	forming the CaR. structure or occupy one T and
charactures of Md (with Md on the (A A A) cosis	there interesting helps (om t A) forms the BiB

see Fig. 2). Invering thereby the energy to the sature is relaxed. Subsequently, these atoms could repetrate the O-T diffusion barrier and

0.36 eV/2H (see Fig. 1). Hence, while bringing two hydrogen atoms together in free space to

hedrally dissolved H's to the same distance in Pd requires investment of ~2.4 eV/2H.

We identify the electronic origins of the instability of H₂ in Pd as follows: Dissolving small amounts of H in Pd stabilizes the system or the court of the cou

whelms the energy increase associated with yolume expansion and with a slight lowering of

RAD R is even smaller. The significant point the rerms energy, nence even the antibonding n-n

content and for the formation of the H₂ molecule: the molecule seeks to dissociate to avoid nonulation of its antibonding state. It is this electronic mechanism (not the internuclear repulsion which is effectively screened for H₂ inside Pd) which is the origin of the instability of the embedded molecule.

Clearly, none of the equilibrium structures shown in Figs. 1 and 2 are conducive to cold fusion, since the equilibrium NoW distance in Pd

studies[6,7], equilibrium fusion rates must be

barding (HT H) exeter[22] The H-W banding

rated from the antibonding state by a "molecular

Ip the Rd. heat where the add (w) and away (a)

effective masses) which would significantly

RAGAREN. RAGIC KNOPOV Science Crent DK-AFTI7-

References

M. Fleischman and S.Pons. J. Electroanal. T. Kuii. W. A. Oates. B. S. Bowerman: and S. E. Jones, E. P. Palmer, J. B. Cair, D. (1983). A. R. Williams, J. Küler, and C. D. 13. L. Decker, G. L. Jensen, J. M. Thorne, S. (london) 229 127 (1000) C T Chan and C C Invia Dhu 130, 249 (1987). 4. W. Kolos and L. Wolniewicz, J. Chem. Z. Sun and D. Tomanek, Phys. Rev. Left. 17. I. S. Anderson. D. K. Ross. and C. J. Vol. 1 (Interscience, New York 1963). Jacobsen, P. Stoltze, O. H. Nielsen, and J. K. Norskov, Phys. Rev. B 40, 1993 19. L. Pauling, Nature (London) 339, 105 (1989). (1989).