Home Search Collections Journals About Contact us My IOPscience ## Relativity-Induced Ordering and Phase Separation in Intermetallic Compounds This content has been downloaded from IOPscience. Please scroll down to see the full text. 1993 Europhys. Lett. 21 221 (http://iopscience.iop.org/0295-5075/21/2/017) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 128.138.41.170 This content was downloaded on 14/07/2015 at 12:38 Please note that terms and conditions apply. ## Relativity-Induced Ordering and Phase Separation in Intermetallic Compounds. Z. W. Lu, S.-H. Wei and A. Zunger National Renewable Energy Laboratory - Golden, CO 80401, USA (received 31 August 1992; accepted in final form 29 October 1992) First, deform hydrostatically pure A and B from their equilibrium volumes $V_{\rm A}$ and $V_{\rm B}$ to the volume. V skin to the first compound a with composition x. In doing so we invest a | | Z. W. Lu et a | $\it l$.: relativity | INDUCED ORDERIN | G AND PHAS | E SEPARATION E | CTC. | 223 | |---|----------------------|-----------------------|----------------------------|-------------|--------------------------|---------------------|------| | ı | Çi- <u>co-t</u> he-i | | \ in a and [A <i>II</i> /- |)) of forms | tion pyth <u>alvie</u> s | for and and arrange | n da | | i
I | | | | | | | | | f | 0 | | | | | | | | = ; | 5 | | | | | | | | | | | | | | | | | | Æ. | | | | | | | | | <u>, </u> | <u> </u> | <u> </u> | | | | | | | | | Pri. | · | 224 EUROPHYSICS LETTERS TABLE I. - Contributions of volume deformation (VD), charge exchange (CE), and relaxation (REL) to | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | |---|---|--|--|--|--|--|---| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Nonrelativistic Relativistic T Pandom | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Nonrelativistic Relativistic T Pandom | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Nonrelativistic Relativistic T Pandom | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 7 | | ÷- | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | L. | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - | | | | , | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Nonrelativistic | | Relativistic | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | Vendom | <i>j</i> 1 | Random | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | • | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Ni Dt | . 1 1 1 1 | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ΔE_{CE} -398.4 -307.0 -504.5 -403.3 ΔE_{REL} -51.6 -60.5 -18.0 -53.8 ΔH $+93.6$ $+176.1$ -95.7 -30.3 δE_{ord} -82.5 $ -65.4$ $ \Delta U_{0.5} \mathrm{Pt}_{0.5}$ $ -65.4$ $ \Delta E_{\mathrm{VD}}$ -82.5 $ -13.5$ -13.5 $+28.2$ $+1.5$ ΔE_{REL} -0 -0 -0 -0 ΔH -71.2 -61.2 $+76.8$ $+50.1$ δE_{ord} -10.0 $ -10.0$ | Ni _{0.5} Pt _{0.5} | • | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\Delta E_{ m REL}$ -51.6 -60.5 -18.0 -53.8 ΔH $+93.6$ $+176.1$ -95.7 -30.3 $\delta E_{ m ord}$ -82.5 $ -65.4$ $ Au_{0.5} Pt_{0.5}$ $\Delta E_{ m VD}$ $+42.3$ $+42.3$ $+48.6$ $+48.6$ $\Delta E_{ m CE}$ -113.5 -103.5 $+28.2$ $+1.5$ $\Delta E_{ m REL}$ ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ΔH -71.2 -61.2 $+76.8$ $+50.1$ $\delta E_{ m ord}$ -10.0 $ +26.7$ $ Ni_{0.5} Au_{0.5}$ $\Delta E_{ m VD}$ $+722.2$ $+722.2$ $+561.8$ $+561.8$ $\Delta E_{ m CE}$ -337.8 -283.8 -464.8 -369.2 $\Delta E_{ m REL}$ -11.9 -82.5 -20.2 -68.3 ΔH $+372.5$ $+355.9$ $+76.8$ $+124.3$ | $\Delta E_{ m REL}$ -51.6 -60.5 -18.0 -53.8 ΔH $+93.6$ $+176.1$ -95.7 -30.3 $\delta E_{ m ord}$ -82.5 $ -65.4$ $ \Delta E_{ m VD}$ -82.5 $ -65.4$ $ \Delta E_{ m VD}$ -82.5 $ -103.5$ -103.5 | $\Delta E_{ m VD}$ | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\Delta E_{ ext{VD}} \ \Delta E_{ ext{CE}}$ | - 398.4 | - 307.0 | - 504.5 | - 403.3 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\Delta E_{ ext{VD}} \ \Delta E_{ ext{CE}}$ | - 398.4
- 51.6 | - 307.0
- 60.5 | - 504.5
- 18.0 | - 403.3
- 53.8 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $egin{array}{l} \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \end{array}$ | - 398.4
- 51.6
+ 93.6 | - 307.0
- 60.5 | - 504.5
- 18.0
- 95.7 | - 403.3
- 53.8 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $egin{array}{l} \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \end{array}$ | - 398.4
- 51.6
+ 93.6 | - 307.0
- 60.5 | - 504.5
- 18.0
- 95.7 | - 403.3
- 53.8 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $egin{array}{l} \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord} \end{array}$ | - 398.4
- 51.6
+ 93.6 | - 307.0
- 60.5 | - 504.5
- 18.0
- 95.7 | - 403.3
- 53.8 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\Delta E_{ m REL}$ ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ΔH -71.2 -61.2 $+76.8$ $+50.1$ $\Delta E_{ m ord}$ -10.0 $ +26.7$ $ -$ | $egin{array}{l} \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord} \ \hline ho_{0.5} { m Pt}_{0.5} \end{array}$ | - 398.4
- 51.6
+ 93.6
- 82.5 | - 307.0
- 60.5
+ 176.1
- | - 504.5
- 18.0
- 95.7
- 65.4 | - 403.3
- 53.8
- 30.3
 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ rac{\Delta E_{ ext{VD}}}{\Delta E_{ ext{CE}}} \ rac{\Delta E_{ ext{CE}}}{\Delta H} \ rac{\delta E_{ ext{ord}}}{\Delta L_{ ext{VD}}}$ | - 398.4
- 51.6
+ 93.6
- 82.5 | - 307.0
- 60.5
+ 176.1
-
+ 42.3 | - 504.5
- 18.0
- 95.7
- 65.4
+ 48.6 | - 403.3
- 53.8
- 30.3
 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $egin{array}{l} \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord} \ \hline \Delta u_{0.5} { m Pt}_{0.5} \ \Delta E_{ m VD} \ \Delta E_{ m CE} \end{array}$ | - 398.4
- 51.6
+ 93.6
- 82.5
+ 42.3
- 113.5 | - 307.0
- 60.5
+ 176.1
-
+ 42.3
- 103.5 | - 504.5
- 18.0
- 95.7
- 65.4
+ 48.6
+ 28.2 | - 403.3
- 53.8
- 30.3

+ 48.6
+ 1.5 | | $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $egin{array}{l} \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord} \ \hline \Delta u_{0.5} { m Pt}_{0.5} \ \hline \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta E_{ m REL} \ \end{array}$ | - 398.4
- 51.6
+ 93.6
- 82.5
+ 42.3
- 113.5
~ 0 | - 307.0
- 60.5
+ 176.1

+ 42.3
- 103.5
~ 0 | - 504.5
- 18.0
- 95.7
- 65.4
+ 48.6
+ 28.2
~ 0 | - 403.3
- 53.8
- 30.3
 | | $\Delta E_{ m VD} & + 722.2 & + 722.2 & + 561.8 & + 561.8 \ \Delta E_{ m CE} & - 337.8 & - 283.8 & - 464.8 & - 369.2$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | $egin{array}{l} \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord} \ \hline \Delta u_{0.5} { m Pt}_{0.5} \ \hline \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \end{array}$ | - 398.4
- 51.6
+ 93.6
- 82.5
+ 42.3
- 113.5
~ 0
- 71.2 | - 307.0
- 60.5
+ 176.1

+ 42.3
- 103.5
~ 0 | - 504.5
- 18.0
- 95.7
- 65.4
+ 48.6
+ 28.2
~ 0
+ 76.8 | - 403.3
- 53.8
- 30.3
 | | $\Delta E_{ ext{CE}}^{ ilde{ ilde{ ilde{L}}}} = -337.8 \qquad -283.8 \qquad -464.8 \qquad -369.2$ | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | $\Delta E_{ m CE} = -337.8 $ | $\Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord} \ \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord}$ | - 398.4
- 51.6
+ 93.6
- 82.5
+ 42.3
- 113.5
~ 0
- 71.2 | - 307.0
- 60.5
+ 176.1

+ 42.3
- 103.5
~ 0 | - 504.5
- 18.0
- 95.7
- 65.4
+ 48.6
+ 28.2
~ 0
+ 76.8 | - 403.3
- 53.8
- 30.3
 | | $\Delta E_{ ext{CE}}^{ ilde{ ilde{ ilde{L}}}} = -337.8 \qquad -283.8 \qquad -464.8 \qquad -369.2$ | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | $\Delta E_{ m CE} = -337.8 $ | $\Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord} \ \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord}$ | - 398.4
- 51.6
+ 93.6
- 82.5
+ 42.3
- 113.5
~ 0
- 71.2 | - 307.0
- 60.5
+ 176.1

+ 42.3
- 103.5
~ 0 | - 504.5
- 18.0
- 95.7
- 65.4
+ 48.6
+ 28.2
~ 0
+ 76.8 | - 403.3
- 53.8
- 30.3
 | | | $\Delta E_{ m REL} = -11.9 - 82.5 - 20.2 - 68.3 \ \Delta H + 372.5 + 355.9 + 76.8 + 124.3$ | $\Delta E_{ m REL} = -11.9 - 82.5 - 20.2 - 68.3 \ \Delta H + 372.5 + 355.9 + 76.8 + 124.3$ | $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m REL}$ ΔH $\delta E_{ m ord}$ $\Delta u_{0.5} { m Pt}_{0.5}$ $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m REL}$ ΔH $\delta E_{ m ord}$ $Ni_{0.5} { m Au}_{0.5}$ | - 398.4
- 51.6
+ 93.6
- 82.5
+ 42.3
- 113.5
- 0
- 71.2
- 10.0 | - 307.0
- 60.5
+ 176.1
-
+ 42.3
- 103.5
~ 0
- 61.2 | - 504.5
- 18.0
- 95.7
- 65.4
+ 48.6
+ 28.2
- 0
+ 76.8
+ 26.7 | - 403.3
- 53.8
- 30.3
 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | ΔH + 372.5 + 355.9 + 76.8 + 124.3 | ΔH + 372.5 + 355.9 + 76.8 + 124.3 | $\Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord} \ \Delta E_{ m VD} \ \Delta E_{ m CE} \ \Delta E_{ m REL} \ \Delta H \ \delta E_{ m ord} \ Ni_{0.5} Au_{0.5} \ \Delta E_{ m VD} \ \Delta E_{ m Crd}$ | - 398.4
- 51.6
+ 93.6
- 82.5
+ 42.3
- 113.5
- 0
- 71.2
- 10.0 | - 307.0
- 60.5
+ 176.1
-
+ 42.3
- 103.5
~ 0
- 61.2
-
+ 722.2 | - 504.5
- 18.0
- 95.7
- 65.4
+ 48.6
+ 28.2
~ 0
+ 76.8
+ 26.7 | - 403.3
- 53.8
- 30.3
 | | ΔH + 372.5 + 355.9 + 76.8 + 124.3 | | | $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m CE}$ $\Delta E_{ m REL}$ ΔH $\delta E_{ m ord}$ $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m REL}$ ΔH $\delta E_{ m ord}$ $Ni_{0.5}Au_{0.5}$ $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ | - 398.4
- 51.6
+ 93.6
- 82.5
+ 42.3
- 113.5
- 0
- 71.2
- 10.0
+ 722.2
- 337.8
- 11.9 | - 307.0
- 60.5
+ 176.1
-
+ 42.3
- 103.5
~ 0
- 61.2
-
+ 722.2
- 283.8 | - 504.5
- 18.0
- 95.7
- 65.4
+ 48.6
+ 28.2
~ 0
+ 76.8
+ 26.7
+ 561.8
- 464.8
- 20.2 | - 403.3
- 53.8
- 30.3

+ 48.6
+ 1.5
- 0
+ 50.1

+ 561.8
- 369.2
- 68.3 | | | , , , , | | $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m REL}$ ΔH $\delta E_{ m ord}$ $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m REL}$ ΔH $\delta E_{ m ord}$ ΔH $\delta E_{ m ord}$ $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m Ni}$ $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m REL}$ ΔH | - 398.4
- 51.6
+ 93.6
- 82.5
+ 42.3
- 113.5
~ 0
- 71.2
- 10.0
+ 722.2
- 337.8
- 11.9
+ 372.5 | - 307.0
- 60.5
+ 176.1
-
+ 42.3
- 103.5
~ 0
- 61.2
-
+ 722.2
- 283.8
- 82.5 | - 504.5 - 18.0 - 95.7 - 65.4 + 48.6 + 28.2 - 0 + 76.8 + 26.7 + 561.8 - 464.8 - 20.2 + 76.8 | - 403.3
- 53.8
- 30.3

+ 48.6
+ 1.5
- 0
+ 50.1

+ 561.8
- 369.2
- 68.3 | | | | | $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m REL}$ ΔH $\delta E_{ m ord}$ $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m REL}$ ΔH $\delta E_{ m ord}$ ΔH $\delta E_{ m ord}$ $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m Ni}$ $\Delta E_{ m VD}$ $\Delta E_{ m CE}$ $\Delta E_{ m REL}$ ΔH | - 398.4
- 51.6
+ 93.6
- 82.5
+ 42.3
- 113.5
~ 0
- 71.2
- 10.0
+ 722.2
- 337.8
- 11.9
+ 372.5 | - 307.0
- 60.5
+ 176.1
-
+ 42.3
- 103.5
~ 0
- 61.2
-
+ 722.2
- 283.8
- 82.5 | - 504.5 - 18.0 - 95.7 - 65.4 + 48.6 + 28.2 - 0 + 76.8 + 26.7 + 561.8 - 464.8 - 20.2 + 76.8 | - 403.3
- 53.8
- 30.3

+ 48.6
+ 1.5
- 0
+ 50.1

+ 561.8
- 369.2
- 68.3 |