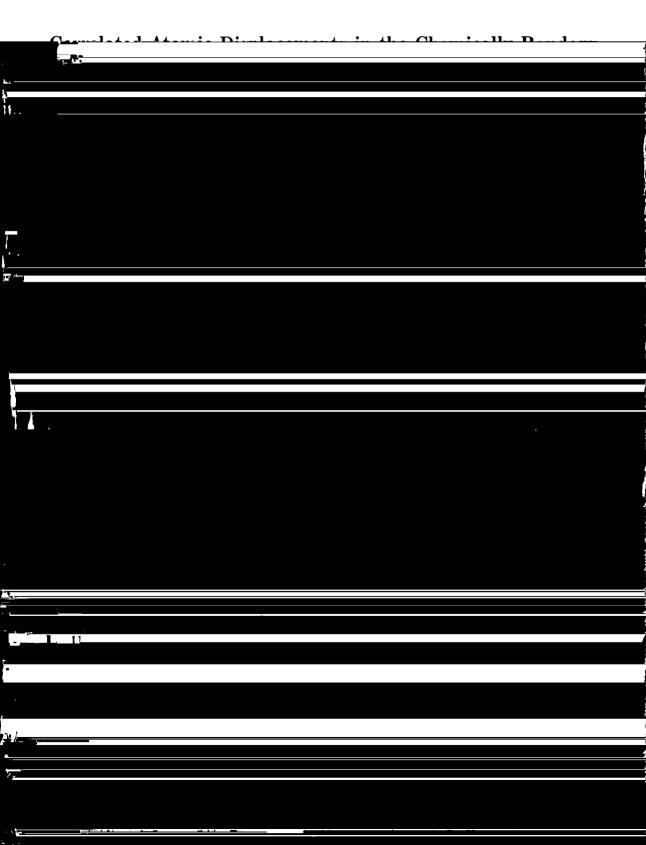
Correlated Atomic Displacements in the Chemically Random $Ga_{1-x}In_xP$ Alloy

This content has been downloaded from IOPscience. Please scroll down to see the full text.

1995 Europhys. Lett. 31 373

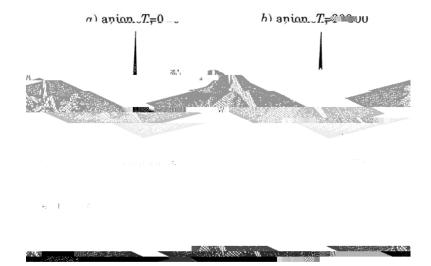
(http://iopscience.iop.org/0295-5075/31/7/006)

View the table of contents for this issue, or go to the journal homepage for more


Download details:

IP Address: 128.138.41.170

This content was downloaded on 14/07/2015 at 11:43


Please note that terms and conditions apply.

Europhys. Lett., 31 (7), pp. 373-378 (1995)

374 EUROPHYSICS LETTERS

. a	perfectly r	andom distrib	bution of aton	ns, there exis	ts a highly co	rrelated static	position
_							-
							_
			1		lr.		
1							
۰,							
<u>^</u>							
							C)
(,							
							la v
4	1						
347							
341							
j _a							

ı	(Ga, In)	reside or	ı the	ideal	f.c.c.	sites	and	that	the	P-cent	ered	Ga₄_	"In"	(n =	0,	4)	
-																	
<u> </u>	1																
							_,										
-		<u> </u>															
1																	
1,																	
(
<u></u>																	
) - '''																	
,																	
					h	<u>μ</u>											

	the instant $t_i = i \Delta t$, and \bar{U}_j is the time-averaged position of atom j given by $\bar{U}_j = \frac{1}{2} (1/n) \sum_{i=1}^{n} U_i(t_i)$. The above election was applied for 100 different initial random atomic
į Tr	
3	
7	

observed trend in the relations between the anion and cation r.m.s. displacements (1).

 $U_{\star, \star}(\mathrm{ZnTe}) =$ $= 0.071 \,\mathrm{A}, \,\,\mathrm{UT}, \,\,(\mathrm{ZnTe}) = 0.060 \,\mathrm{O}, \,\,U_{\star}(\mathrm{CdTe}) = 0.065 \,\mathrm{A}, \,\,\mathrm{and}$ (CdTe) = 0.080 A. These should be compared with the experimental results of Comedi and Kalish Uz,(ZnTe) = (0.125 ± 0.01)8,

observe that although there is a factor of about 2 between these experimental results and ours, the trend in the relations between the anions and cations is reproduced.

- [1] BOYCEJ. B. and MIKKELSEN. J. C., J. Cryst. Growth, 98 (1989) 37; BALZAROTAI, MOTTAN., KISIEL A., ZIMNAL-STARNAWSMA CZYZYM. T. and PODGORMYPhys. Rev. B, 31 (1985) 7526. [2] ZUNGERA. AND JAFFE, Phys. Rev. Lett., 51 (1983) 002; MAGRIK., BERNAR**u**. E. AND ZUNGER
- A., Phys. Rev. B, 43 (1991) 1593. [3] CHENA.-B. and SHERA., Phys. Rev. B, 32 (1985) 3695.
 - [41 BERNARD]. E. and ZUXGERA., Phys. Rev. B, 34 (1986) 5992. [5] PODGORMY CZYZYKM. T., BALZAROTTA., LETARDIP., MOTTAN., KISIEL A. and
 - ZIMNAL-STARNAWSMA Solid State Commun., 55 (1985) 413. [6] MARZARN. DE GIRONCOLS. and BARONIS. Phys. Rev. Lett., 72 (1994) 4001.
 - [71 KEATINOP. N., Phys. Rev., 145 (1966) 637. Ind ADLERI, $\overline{P}hys$, Rev, \overline{B} , 51 (1995) $\overline{10795}$
 - WEI S.-II. and ZUNGERA., to be published in Phys. Rev. B.
 - [10] ISHIDK., NOMURAT., TOKUNAGK., OHTANIH. and NISHIZAWAT., J. Less-Comm. Met., 155

 - [111 FOSTHR M. and WOODS. F., J. Electrochem. Soc., 118 (1971) 1175; PANISH