Chemical trends in band offsets of Zn- and Mn-based II-VI superlattices: *d***-level pinning and offset compression**

Su-Huai Wei and Alex Zunger *National Renewable Energy Laboratory, Golden, Colorado 80401* ~Received 15 November 1995!

Calculation of the unstrained band offsets between conventional zinc-blende II-VI superlattices ~ZnS/ZnSe/ZnTe!, or between magnetic II-VI superlattices ~MnS/MnSe/MnTe! or combinations thereof ~Mn*X*/ Zn*X*! show that -i! the range of offsets spanned by different magnetic II-VI superlattices is compressed by a factor of 2 relative to the range of offsets spanned by conventional II-VI superlattices, -ii! the distance between the Mn *d* band and the valence-band maximum in Mn*X* depends weakly on *X*, while in conventional II-VI superlattices ~e.g., Zn 3*d* in ZnX! there is a wider spread, and ~iii! unlike the case for conventional commonanion II-VI superlattices, the mixed offset DE_V -Zn*X*/Mn*X*! depends strongly on *X*. We show that all three effects have a simple and common physical origin.

Superlattices and heterojunctions between common-cation conventional II-VI superlattices ~e.g., ZnS/ZnSe/ZnTe!, beshifted relative to the unstrained values through the deformation potential. The change of E_{VBM} depends on the size and direction of the strain.²² We find that the total uncertainty due to the neglect of core-level deformation potential and the choice of magnetic ordering ~see below! is about 0.1 eV.

The band-structure calculation is performed using the local-spin-density-functional approximation^{23,24} ~LSDA! as implemented by the general-potential, *relativistic*, allelectron, linearized-augmented-plane-wave ~LAPW! method.²⁵ We used the Ceperley-Alder exchange and correlation potential²³ as parametrized by Perdew and Zunger.²⁴ For Mn*X* we assume a type-I antiferromagnetic spin arrangement. The electronic properties of type-I Mn*X* are similar to those of the type-III ground state.²⁶

We have previously 14 noted that the LSDA underestimates the spin-exchange splitting in Mn*X*. We corrected this²⁶ via addition to the LSDA of a fitted parametric external potential, finding that this also improves considerably the agreement with experiment of many other band-structure-related properties. Here we calculate the band offset using both the standard LSDA and the LSDA-corrected ~LSDA1*C*! approaches. Eight systems ~ZnS/MnS, ZnSe/MnSe, ZnTe/ MnTe, ZnS/ZnSe, ZnSe/ZnTe, ZnS/ZnTe, CdTe/MnTe, and MnS/MnSe! were computed directly in the present study. Our calculated unstrained valence-band offsets are given in Table I, together with our previously^{13,14} computed band offsets for ZnTe/CdTe, ZnTe/HgTe, and CdTe/HgTe. We find that transitivity is well satisfied for these *unstrained,* ''natural'' offsets. Hence, in Table I all of the VBM energies are related to that of ZnS. The trends ~i!–~iii! noted in the Introduction are evident in our results.

To understand these trends, we provide in Fig. 1 a schematic diagram showing how the atomic anion *p* orbitals and the cation *d* orbitals ~both shown as dashed horizontal lines! interact to produce the VBM and the occupied d^1 bands ~solid horizontal lines! in the crystal. In the zinc-blende compound with T_d site symmetry both the anion p and the cation *d* orbitals transform -among others! as the G_{15} -or t_2 ! representation. These two equal-symmetry states can interact with each other. The interaction between the *p* and *d* states results in a level repulsion, inversely proportional to the unperturbed energy difference $\mathbb{I}e_d \mathbb{2}e_p \mathbb{I}$. The key aspect of Fig. 1 is that due to the large exchange splitting between the Mn spin-up and spin-down *d* orbitals, the S, Se, and Te *p* orbitals lie *between* the occupied Mn d^{\perp} and unoccupied Mn d^2 levels, while the Zn *d* levels are systematically well *below* the anion p levels. This explains effects $-i!$ — $-iii!$ noted in the Introduction as follows.

in MnTe is pushed down less than that in MnS, due to the weaker *p*-*d* repulsion in the former. As a result, $DE_d1(MnX)$ is only weakly dependent on X.

 N iii! *Strong anion dependence* in $DE_v(ZnX/MnX)$: The band offset $DE_VZnS/MnS!$. 0, since the S 3*p* to Mn $d¹$ coupling is very strong due to the closeness of the respective energy levels. On the other hand, DE_V -ZnTe/MnTe!, 0, because the VBM of ZnTe is pushed up by the *p*-*d* repulsion, while in MnTe the net shift of VBM due to the *p*-*d* repulsion is very small, since the Te *p* orbital energy is almost in the middle between Mn d^1 and d^2 .

The hybridization of *d* orbitals at VBM of zinc-blende compounds reduces the spin-orbit splitting D_0 .^{13,14} In Mn*X*, the *d* orbital mixing at the VBM is large ~due to the small anion *p* to cation *d* energy difference!, thus the reduction of D_0 in Mn*X* is much larger than in Zn*X* ~Table I!. This reduction of D_0 ~Mn*X*! also reduces the upwards shift of VBM in Mn*X*, thus enhancing effects ~i!-~iii! above. This spin-orbit contribution to ~i!–~iii! is maximal for *X*5Te, and smaller for *X*5S.

The trends discussed above are general for all II-VI superlattices and can thus be used to estimate the band offset between other related systems. For example, we expect that the band offset DE_V ⁻MgTe/MnTe! should be small and positive. This is because the VBM shift due to *p*-*d* repulsion is very small in MnTe @effect ~i!#, while the downward shift of the VBM in zinc-blende MgTe by the unoccupied, highenergy Mg d orbital²⁷ is compensated by its larger spin-orbit splitting $-D_050.83$ eV! relative to MnTe. This expectation is confirmed by our calculated value of DE_V -MgTe/MnTe! 50.17 eV, and is consistent with experimental observations,^{9,10,28} D E_V -MgTe/MnTe! > 0.

Our calculated band offsets given in Table I are in good agreement with a number of recent experimental measurements.³⁻¹⁰ For example, our calculated band offset DE_V~ZnSe/MnSe!520.2260.1 eV ~Table I! is consistent with the measured^{3–7} values of DE_V -ZnSe/MnSe! $520.1560.1$ eV. Our calculated band offset¹⁴ of DE_V -CdTe/MnTe! $520.4460.1$ eV -Table I! is also in good agreement with recently measured⁸⁻¹⁰ values of agreement with recently measured $8-10$ DE_V ⁻CdTe/MnTe! $520.4860.1$ eV using photoluminescence excitation spectroscopy. However, both the calculated and measured results do not agree with previous prediction¹⁷ based on the dielectric-midgap model, suggesting that the VBM of MnTe lies *above* that of CdTe @i.e., DE_V -CdTe/MnTe! 510.6 eV#.

- 12 L. Wang, S. Sivananthan, R. Sporken, and R. Caudano -private communication!.
- 13S.-H. Wei and A. Zunger, Phys. Rev. B **37**, 8958 ~1988!; J. Vac. Sci. Technol. A **6**, 2597 ~1988!.
- 14S.-H. Wei, in *II-VI Semiconductor Compounds* ~Ref. 2!, p. 71. In this paper, the band offset DE_V ⁻MnTe/CdTe! $520.3860.1$ eV was calculated using standard LSDA and averaged over spin-up and spin-down ferromagnetic states.
- 15S.-H. Wei and A. Zunger, J. Appl. Phys. **78**, 3846 ~1995!.
- ¹⁶ J. Tersoff, Phys. Rev. Lett. **56**, 2755 ~1986!.
- ¹⁷N. E. Christensen, I. Gorczyca, O. B. Christensen, U. Schmid, and M. Cardona, J. Cryst. Growth **101**, 318 ~1990!.
- 18S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B **52**, 13 975 ~1996!.
- 19E. Yu and T. McGill, in *Solid State Physics*, edited by H. Ehrenreich and D. Turnbull ~Academic, Boston, 1992!, Vol. 46, p. 1.
- 20T. M. Duc, C. Hsu, and J. P. Faurie, Phys. Rev. Lett. **58**, 1127

~1987!.

- 21A. Franceschetti, S.-H. Wei, and A. Zunger, Phys. Rev. B **50**, 17 797 ~1994!.
- 22F. H. Pollak and M. Cardona, Phys. Rev. **172**, 816 ~1968!.
- 23D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. **45**, 566 ~1980!.
- ²⁴ J. P. Perdew and A. Zunger, Phys. Rev. B **23**, 5048 ~1981!.
- 25S.-H. Wei and H. Krakauer, Phys. Rev. Lett. **55**, 1200 ~1985!, and references therein.
- 26S.-H. Wei and A. Zunger, Phys. Rev. B **48**, 6111 ~1993!.
- 27 Interestingly, the existence of a valence-band offset between the common-anion lattice-matched AlAs/GaAs pair is also ascribed @S.-H. Wei and A. Zunger, Phys. Rev. Lett. **59**, 144 ~1987!# to an imbalance between difference *p*-*d* repulsions: the ~empty! Al *d* orbital pushes the VBM of AlAs *down* while the ~occupied! Ga *d* pushes the VBM of GaAs ~a bit! *up*.
- 28B. Kuhn-Heinrich, W. Ossau, H. Heinke, F. Fischer, T. Litz, A. Wang, and G. Landwehr, Appl. Phys. Lett. **63**, 2932 ~1993!.