$Room\text{-}Temperature\ Ferromagnetism\ in\ Mn\text{-}Doped\ Semiconducting\ CdGeP_2$

Pri a Mahade an and Ale Z nger

(Recei ed 28 J ne 2001; p bli hed 14 Jan ar 2002)

The chalcop ri e $CdGeP_2$ doped $\ i$ h Mn ha e been recen 1 fo nd o e hibi room-empera re ferromagne i m. I o alen $\ b$ i ion of he Cd i e i e pec ed, ho e er, o crea e \dots , in

a om i remo ed. μ_{α}^{a} i he ab ol e al e of he chemical po en ial of a om α . Since he forma ion energie are conen ionall defined i h re pec o he elemen al olid(), e e pre μ_{α}^{a} a he m of a componen d e o he elemen in i mo commonl occ rring r c re μ_{α}^{s} , and an e ce chemical po en ial μ_{α} , i.e., $\mu_{\alpha}^{a} = \mu_{\alpha}^{s} + \mu_{\alpha}$. Here μ_{α}^{s} for P, Ge, Mn, and Cd are he o al energie e al a ed for he f ll op imi ed elemen al olid in he ob er ed cr al r c re [14]. If $\Delta H_{f}(\text{CdGeP}_{2})$ i he forma ion energ of CdGeP₂, hen μ_{Cd} and μ_{Ge} are de ermined b

$$\mu_{\text{Cd}} + \mu_{\text{Ge}} + 2\mu_P \le \Delta H_f(\text{CdGeP}_2).$$
 (2)

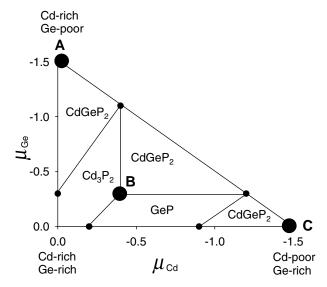
F r hermore, $\mu_{\text{Cd}} \leq 0$; $\mu_{\text{Ge}} \leq 0$, beca e o her i e he elemen al olid ill precipi a e. The pre ence of o her in er ening binar pha e , ho e er, f r her re ric he al e of μ_{Cd} and μ_{Ge} : One m ol e Eq. (2) along i h he con rain placed b he forma ion energie $\Delta H_f(\text{Cd}_3\text{P}_2)$ and $\Delta H_f(\text{GeP})$ of Cd_3P_2 and GeP:

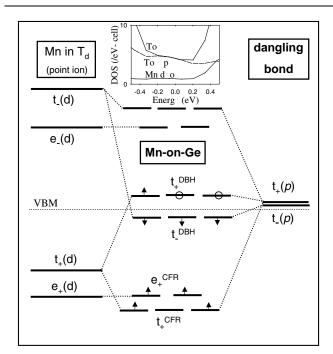
$$3\mu_{\mathrm{Cd}} + 2\mu_{P} \le \Delta H_{f}(\mathrm{Cd}_{3}\mathrm{P}_{2}), \tag{3}$$

$$\mu_{\text{Ge}} + \mu_P \le \Delta H_f(\text{GeP}),$$
 (4)

o find he allo ed range for $\mu_{\rm Cd}$ and $\mu_{\rm Ge}$ in CdGeP₂. The elec ron ioni ed pon forming a po i i el charged defec join he Fermi ea o he forma ion energ increa e b $q\epsilon_f$, here ϵ_f i he fermi energ hich arie from 0 eV a he alence band ma im m (VBM) of he ho ma erial o he band gap of he ho . Eq a ion (2) (4) ere ol ed ing he e perimen al al e [15,16] of he forma ion energie for he binar pha e Cd₃P₂ (-1.2 eV) and GeP (-0.3 eV), hile a al e of -1.5 eV, in he ame range a o her chalcop ri e [17], a ed for CdGeP₂.

The allo ed range of chemical po en ial μ_{Cd} and μ_{Ge} for CdGeP₂ and he binarie Cd₃P₂ and GeP are gi en in Fig. 1. There are hree di inc chemical po en ial domain here CdGeP₂ can e i : poin : Cd rich, Ge poor;




FIG. 1. The range of Cd and Ge chemical po en ial here $CdGeP_2$, GeP, and Cd_3P_2 are able.

poin : Cd rich, Ge-rich; and poin : Cd poor, Ge rich. Fig re 2 ho he forma ion energie of he in rin ic poin defec Ge_{Cd} , V_{Cd} , and V_{Ge} a ell a b i ional defec Mn_{Ge} and Mn_{Cd} a he chemical po en ial , , and of Fig. 1 a a f nc ion of he Fermi energ . The er ical da hed line deno e he generali ed gradien appro imaion (GGA) gap hich i ndere ima ed i h re pec o he e perimen al 1.72 eV gap. Tran i ion poin be een charge a e are indica ed b olid circle . The defec can

in he e condi ion ha no hole and o canno promo e an iferromagne i m. ()Ge-on-Cd an i i e ha high forma ion energ , and o ld herefore no ha e appreciable concen ra ion.

Ha ing iden ified he hole-prod cing cen er ha can ield FM, e ne e amine he predic ed ol bili ie of i ola ed Mn. O r calc la ed forma ion energie for CdGeP2:Mn and imilar calc la ion for GaA:Mn ho con i en l lo er al e (for he appropria e chemical po en ial) in he former ca e, predic ing higher Mn ol bili: The lo e forma ion energ of b i ing a Ga a om i h Mn in GaA i 1.0 eV (nder Mn-rich, Ga-poor condi ion). In con ra, e en in he or -ca e cenario, e find a

herefo44.9f476.22.9(e)0(n)-3

