Atomistic description of the electronic structure of In,Ga;_,As alloys
and InAs/GaAs superlattices
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We show how an empirical pseudopotential approach, fitted to bulk and interfacial reference systems,
provides a unified description of the electronic structure of random allayi& and epitaxigl superlattices,
and related complex systems. We predict the composition and superlattice-period dependence of the band
offsets and interband transitions of InAs/GaAs systems on InP and GaAs substrates.
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I. INTRODUCTION

InAs and GaAs are the building blocks of a diverse range
of optoelectronic heterojunction systems, includingshort-
period superlattices (InAg)



The various InAs/GaAs systems discussed abagewell
as other isovalent and isostructural semiconductor palfs



LDA calculation$**® predict alarge negative a<0 defor-
mation potential for the CBM, and small deformation poten-



varied, plane waves are added or subtracted, potentially sig-
nificantly increasing or decreasing the flexibility of the basis
set. In order to minimize this effect, we find it beneficial to
apply a weighting function to the individual plane waves
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where E¢ is the kinetic energy of the plane waJ&
+k|2/2. We find »=0.8 provides an improved fit to cell-
shape dependent properties such as hydrostatic and biaxial
deformation potentials and alloy properties of strongly



A. Equilibrium atomic positions in superlattices
1. Continuum elasticity(CE) theory for strained superlattices

A film of a material grown epitaxially on a thick substrate
will strain so that its atoms grow in registry with those of the
substrate. Thus, its dimensiay, the lattice parameter of the
layer parallel to the interface, becomes equal to that of the
substrateag coherency condition anda, , the lattice pa-
rameter of the layer perpendicular to the interface, is deter-
mined by the strain tensor. Based on macroscopic continuum
elasticity theory,’~%°

a, a;,6)=8,—[2-30 6)] as—aey). 17
Here, G is the direction of deformation and the epitaxial
strain reduction factor is given by
qG)=1- LA, 18)
Cutvy G)A
whereB is the bulk modulus, th€;; are elastic constants of

the embedded material, and

1
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is the elastic anisotropy is a purely geometric factor given
by

y G)=y % )=si 2 )+sin’% )siE ), 20

where aré. the spherical angles formed lﬁy A general
expression fog(G) is given in Ref. 67. Explicit expressions
for q(G) along the principal directions001), 011)
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FIG. 2. c/a from continuum
elasticity CE) [solid lines, Eq.
17)] and from VFF filled circles
for (GaAs),(InAs),, superlattices
a) along 001) and b) 111) di-
rections on GaAs, andc) along
001) and d) 111) directions on
InP substrates. The asymptotic
—o values ofc/a are shown as
dashed lines.

—e are shown as dashed fines in Fig. 2. We see that oA first-principles calculation by Bernard and Zuntefor
tinuum elasticity also works well for the/a ratio. i d :
y (InAs),(GaAs), 001) superlattice resulted i, =7.73%.

4. VFF vs LDA for superlattices Our GVFF gives 7.36%.

As a simple test of our GVFF for alloy systems, we com-
pared the relaxed atomic positions from GVFF with pseudo- 5. Atomic relaxation and interlayer spacing in InA&aAs
potential LDA results for a100) (GaAs), /(InAs), superlat- superlattices
tice where thec/a ratio is fixed to 1, but we allow . . . .
energy minimizing changes in the overall lattice constant Figure 3 shows 001) and 111) interlayer distances in

L (GaAs)/(InAs)g superlattices. For an unrelaxed01)
]Si?]qu) and the atomic internal degrees of freedougj. We superlattice, the internal coordinate of the indium

plane is 0.25 with respect to theaxis. The straine, =(z
aégA:5.8612 A, = Zequi Zequil _is shown in Fi_g. 3. For anl1l) superlattice,
there are two internal coordinatas, andd,. The unrelaxed
ULPA— 0 2305 idea) values are d;=+3/4 and d,=.3/12. d, is
eq ' the distance between Ga) and As atom layers where the
while the GVFF results are bond is along 111) directions andl, is the distance between

Galn) and As atom layers where the bond is along_()lll

(111), or (111) directions. The strainse;=(d;

_dl,equil)/dl,equil and 62:(d2_d2,equil)/d2,equil are shown
Ugq ' =0.2305. in Fig. 3.

ag, =5.8611 A,
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We see that on a GaAs substrate, the atoms of the GaAs
segment of the superlattic&L) are unrelaxed, whereas the
strain in the InAs segment is positive. Most atoms have con-
stant strain, except the atoms next to the interface. On the
other hand, on an InP substrate, the GaAs segment is dilated
(e, <0) and the InAs segment is compressed>*$0), even
though the lattice constant of the SL is almost matched to
that of the substrate.

B. Equilibrium atomic positions in random alloys

The GVFF also is used to determine equilibrium atomic
positions in random alloys. Here we create a supercell and
randomly occupy cation sites with Ga and In atoms, accord-
ing to the concentration in,GaAs. We then minimize the
GVFF elastic energy by displacing atoms to their relaxed
positions. We use a conjugate gradient algorithm using ana-
lytically calculated forces for both atomic positions aad.

In a previous studi? we reported the results for the closely
related In_,GaP alloy, so we will not repeat the results for
In,_,GaAs here. In both cases we find a bimodal distribu-
tion of the nearest-neighbor anion-cation bond lengths, and a
multimodal distribution of the cation-cation distances. De-
tails are given in Ref. 66.

IV. STRAIN-MODIFIED BAND OFFSETS

Once we have determined the equilibrium atomic posi-
tions, and have a reliable screened pseudopotential, we can
solve the Schidinger equation, Eq.3), in the plane-wave
basis of Eq. 5). We first solve the simplest case, epitaxially
deformed InAs and GaAs. Here, we imagine that GaAs is
coherently strained on a substrate whose lattice constant
ranges from that of GaAs to that of InAs. The tetragonal

deformationa, (a



InAs/GaAs band offsets for various substrates such as GaAs,
InP, and InAs. The calculated strained offsets on these sub-
strates are given in Fig. 5 for two orientation§01) and
111).

V. BAND-EDGE STATES IN RANDOM In yGa;_4As
ALLOYS

Figure 6 shows the band-edge states and the band gaps of
a) relaxed “bulk” ) In,Ga



crossovel around 50% In, and a very shallow offset, sug-
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FIG. 7. The CBM and VBM
levels for 001) and 111
(GaAs),(InAs),, superlattices on
GaAs and InP. The boxes on the
right-hand side of each panel de-
pict the band edges of pure GaAs
dashed lings and pure InAs
solid lineg binaries strained epi-
taxially on the corresponding sub-
strate for the corresponding orien-
tation. The two lower panels
depict the band gaps.

FIG. 8. The CBM and VBM
levels and band gaps fa@01) and
111)) (GaAs),(InAs); superlat-
tices on GaAs and InP. The boxes
on the right-hand side of each
panel depict the band edges of
pure GaAs and pure InAs binaries
strained epitaxially on the corre-
sponding substrate for the corre-
sponding orientation.



of the 001 (GaAs),(InAS),, superlattice on InP fon=2, 6,
and 10. For the largest period shownr 10, the CBM states
are localized on InAs, just as in the asymptotic behavior
noted in Fig. 6. However, for shorter periods, Fig. 10 shows
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| (001) (GaAs) (InAs), SL on InP |
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0.03 0.015 0.015
E 0.02 0.010 0.010
1 oot 0.005 0.005 FIG. 10. The planar average of wave func-
000 0,000 0,000 tions for 001 (GaAs),(InAs), SL on InP for
— ' ) periodsn=2,6,10 and for the states CBM, Ihl,
] 006 hhi, and hh2.
7 0.03 , n_ﬂ 0.03 \ ‘
APPENDIX A: CALCULATION OF THE LOCAL STRAIN local strain tensofe;; is calculated at each atomic site by

Cd)nsidering the tetrahedron formed by the four nearest

To use the empirical pseudopotential, one needs a metho .
to calculate the local strain for arbitrary systems. Figure 121e|ghbor atoms. The d|stqrted tetrahedron ed@ﬁ'R%@
dR3, are related to the ideal tetrahedron edggs,R2;,

illustrates how the local strain is calculated. After the atomica" 34 ° _
positions are relaxed by minimizing the elastic energy, theandR3, via which

(001) (GaAs),(InAs),SL on InP
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FIG. 11. The dipole elements for interband transitionsddl) (GaAs),(InAs),, SL on InP.
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RlZ,x R23)( R34,)( 1+ ey €yx €7x
R12,y R23y R34’y = 1+ ny 1+ Eyy Ezy
Ri2; Ros; Ras, €xz €yz 1+e€,,
0 0 0
R12,>< R23,)( R34><
0 0 0
x| Rizy Rzsy Raay Al)
0 0 0
R12z R23,z R34,2
The ideal tetrahedron edges aréR%}={[110]a/

2,[011]a/2[110]a/2}, wherea denotes the equilibrium lat-
tice constant. The local strair;; is then calculated by a
matrix inversion as

1+ exx €yx €zx
ltey ltey €y
€z €yz 1+e,,
0 0 0 —1
Riox Rosx  Raax Riox Rasx Raay
0 0 0
=| Rizy Rasy Raay Risy Rasy Ragy -1,

0 0 0
Ri2z Rasz Rsaz/ \ Rip, Ry, Ray,

A2)
wherel is the unit matrix.

AV R1XR1g)R14/6 1
v v 7

whereV is the volume of the ideal, undistorted tetrahedron,
i.e., V=(R%,XRIHR? /6.

Tr e)= A3)

APPENDIX B: CALCULATION OF THE SPIN-ORBIT
INTERACTION

The spin-orbit interaction is included in the Hamiltonian
via a nonlocal, atom-centergatlike potential. In order to
maintain linear scaling with system size, we use the “small
box” implementation of Ref. 62 to evaluate the potential.

The spin-orbit term in the Hamiltonian, EdL6), consists
of finite-ranged, atom-centered potentials, assumed zero for
r=r¢,. Only the part ofys within r.,; has contributions to

Vsozp(r), which leads to the following implementation. For
a given atom aR;, on the real-space numerical grid, we
consider a small box centered dR;. Defining q(r)
=y(r) for grid points inside the small bo®, we then treat
q as if it were periodic within the small box. This permits
us to use the fast Fourier transform ¢t(r), #o(Go),
whereGg, is a reciprocal lattice vector of the small b
Now in Fourier space, we can directly evaluate the nonlocal
spin-orbit potentialy o(Gq,Gg),
o GQ)=§ vg Gg.Gy) g GO). B1)

Fourier transforming the new wave function, back to
real space we then add this small box of wave function back
to the full wave function. The computational effort for each
atom is therefore fixed, independent of the total size of the
system, and the cost of the method scales linearly with the
size of the system.

For the spin-orbit potential itself, we adopt a Gaussian

Since only the trace of the strain is required, the evaluaform, up(r)=exp[—(r/0.7)2], and rescale the amplitude of

tion of Tr(e) can be simplified as

this potential for different atoms.
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