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We show how an empirical pseudopotential approach, fitted to bulk and interfacial reference systems,
provides a unified description of the electronic structure of random alloys~bulk and epitaxial!, superlattices,
and related complex systems. We predict the composition and superlattice-period dependence of the band
offsets and interband transitions of InAs/GaAs systems on InP and GaAs substrates.
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I. INTRODUCTION

InAs and GaAs are the building blocks of a diverse ran
of optoelectronic heterojunction systems, including~i! short-
period superlattices (InAs)n
e



The various InAs/GaAs systems discussed above~as well
as other isovalent and isostructural semiconductor pairs! all



n

LDA calculations54,55 predict alarge negative ac,0 defor-
mation potential for the CBM, and small deformation pote
 -
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varied, plane waves are added or subtracted, potentially
nificantly increasing or decreasing the flexibility of the ba
set. In order to minimize this effect, we find it beneficial
apply a weighting function to the individual plane waves

wG5
cos~u!11

2
, ~14!

u5p
EG2nEcut

~12n!Ecut
, ~15!

where EG is the kinetic energy of the plane waveuG
1ku2/2. We find n50.8 provides an improved fit to cell
shape dependent properties such as hydrostatic and bi
deformation potentials and alloy properties of strong
ig-
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A. Equilibrium atomic positions in superlattices

1. Continuum elasticity„CE… theory for strained superlattices

A film of a material grown epitaxially on a thick substra
will strain so that its atoms grow in registry with those of t
substrate. Thus, its dimensionai , the lattice parameter of th
layer parallel to the interface, becomes equal to that of
substrateas ~coherency condition!, and a' , the lattice pa-
rameter of the layer perpendicular to the interface, is de
mined by the strain tensor. Based on macroscopic continu
elasticity theory,67–69

a'~as ,Ĝ!5aeq2@223q~Ĝ!#~as2aeq!. ~17!

Here, Ĝ is the direction of deformation and the epitaxi
strain reduction factor is given by

q~Ĝ!512
B

C111g~Ĝ!D
, ~18!

whereB is the bulk modulus, theCi j are elastic constants o
the embedded material, and

D5C442
1

2
~C112C12! ~19!

is the elastic anisotropy.g is a purely geometric factor give
by

g~Ĝ!5g~f,u!5sin2~2u!1sin4~u!sin2~f!, ~20!

wheref areu the spherical angles formed byĜ. A general
expression forq(Ĝ) is given in Ref. 67. Explicit expression
for q(Ĝ) along the principal directions~001!, ~011!
e
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ATOMISTIC DESCRIPTION OF THE ELECTRONIC . . . PHYSICAL REVIEW B 66, 045208 ~2002!
FIG. 2. c/a from continuum
elasticity ~CE! @solid lines, Eq.
~17!# and from VFF~filled circles!
for (GaAs)n(InAs)m superlattices
~a! along ~001! and ~b! ~111! di-
rections on GaAs, and~c! along
~001! and ~d! ~111! directions on
InP substrates. The asymptoticn
→` values ofc/a are shown as
dashed lines.
o
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→` are shown as dashed lines in Fig. 2. We see that c
tinuum elasticity also works well for thec/a ratio.

4. VFF vs LDA for superlattices

As a simple test of our GVFF for alloy systems, we co
pared the relaxed atomic positions from GVFF with pseu
potential LDA results for a~100! (GaAs)1 /(InAs)1 superlat-
tice where thec/a ratio is fixed to 1, but we allow
energy minimizing changes in the overall lattice const
(aeq) and the atomic internal degrees of freedom (ueq). We
find

aeq
LDA55.8612 Å,

ueq
LDA50.2305,

while the GVFF results are

aeq
GVFF55.8611 Å,

ueq
GVFF50.2305.
04520
n-

-
-

t

A first-principles calculation by Bernard and Zunger65 for
(InAs)1(GaAs)7 ~001! superlattice resulted ine'57.73%.
Our GVFF gives 7.36%.

5. Atomic relaxation and interlayer spacing in InAsÕGaAs
superlattices

Figure 3 shows~001! and ~111! interlayer distances in
(GaAs)8 /(InAs)8 superlattices. For an unrelaxed~001!
superlattice, the internal coordinatez of the indium
plane is 0.25 with respect to thec axis. The straine'5(z
2zequil)/zequil is shown in Fig. 3. For an~111! superlattice,
there are two internal coordinates,d1 andd2. The unrelaxed
~ideal! values are d15A3/4 and d25A3/12. d1 is
the distance between Ga~In! and As atom layers where th
bond is along~111! directions andd2 is the distance betwee
Ga~In! and As atom layers where the bond is along (111)̄,
(11̄1), or (1̄11) directions. The strains e15(d1
2d1,equil)/d1,equil and e25(d22d2,equil)/d2,equil are shown
in Fig. 3.
8-7
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We see that on a GaAs substrate, the atoms of the G
segment of the superlattice~SL! are unrelaxed, whereas th
strain in the InAs segment is positive. Most atoms have c
stant strain, except the atoms next to the interface. On
other hand, on an InP substrate, the GaAs segment is di
(e',0) and the InAs segment is compressed (e'.0), even
though the lattice constant of the SL is almost matched
that of the substrate.

B. Equilibrium atomic positions in random alloys

The GVFF also is used to determine equilibrium atom
positions in random alloys. Here we create a supercell
randomly occupy cation sites with Ga and In atoms, acco
ing to the concentration In12xGaxAs. We then minimize the
GVFF elastic energy by displacing atoms to their relax
positions. We use a conjugate gradient algorithm using a
lytically calculated forces for both atomic positions anda' .
In a previous study66 we reported the results for the close
related In12xGaxP alloy, so we will not repeat the results fo
In12xGaxAs here. In both cases we find a bimodal distrib
tion of the nearest-neighbor anion-cation bond lengths, an
multimodal distribution of the cation-cation distances. D
tails are given in Ref. 66.

IV. STRAIN-MODIFIED BAND OFFSETS

Once we have determined the equilibrium atomic po
tions, and have a reliable screened pseudopotential, we
solve the Schro¨dinger equation, Eq.~3!, in the plane-wave
basis of Eq.~5!. We first solve the simplest case, epitaxia
deformed InAs and GaAs. Here, we imagine that GaAs
coherently strained on a substrate whose lattice constanas
ranges from that of GaAs to that of InAs. The tetragon
deformationa'(a
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InAs/GaAs band offsets for various substrates such as G
InP, and InAs. The calculated strained offsets on these
strates are given in Fig. 5 for two orientations,~001! and
~111!.

V. BAND-EDGE STATES IN RANDOM In XGa1ÀxAs
ALLOYS

Figure 6 shows the band-edge states and the band ga
~a! relaxed~‘‘bulk’’ ! InxGa12x
s,
b-

of
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crossover15 around 50% In, and a very shallow offset, su
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ATOMISTIC DESCRIPTION OF THE ELECTRONIC . . . PHYSICAL REVIEW B 66, 045208 ~2002!
FIG. 7. The CBM and VBM
levels for ~001! and ~111!
(GaAs)n(InAs)n superlattices on
GaAs and InP. The boxes on th
right-hand side of each panel de
pict the band edges of pure GaA
~dashed lines! and pure InAs
~solid lines! binaries strained epi-
taxially on the corresponding sub
strate for the corresponding orien
tation. The two lower panels
depict the band gaps.

FIG. 8. The CBM and VBM
levels and band gaps for~001! and
~111! (GaAs)n(InAs)1 superlat-
tices on GaAs and InP. The boxe
on the right-hand side of eac
panel depict the band edges o
pure GaAs and pure InAs binarie
strained epitaxially on the corre
sponding substrate for the corre
sponding orientation.
045208-11
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of the~001! (GaAs)n(InAS)n superlattice on InP forn52, 6,
and 10. For the largest period shown,n510, the CBM states
are localized on InAs, just as in the asymptotic behav
noted in Fig. 6. However, for shorter periods, Fig. 10 sho
r
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ATOMISTIC DESCRIPTION OF THE ELECTRONIC . . . PHYSICAL REVIEW B 66, 045208 ~2002!
FIG. 10. The planar average of wave fun
tions for ~001! (GaAs)n(InAs)n SL on InP for
periodsn52,6,10 and for the states CBM, lh1
hh1, and hh2.
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APPENDIX A: CALCULATION OF THE LOCAL STRAIN

To use the empirical pseudopotential, one needs a me
to calculate the local strain for arbitrary systems. Figure
illustrates how the local strain is calculated. After the atom
positions are relaxed by minimizing the elastic energy,
04520
od
2
c
e

local strain tensore i j is calculated at each atomic site b
considering the tetrahedron formed by the four near
neighbor atoms. The distorted tetrahedron edges,R12,R23,
and R34 are related to the ideal tetrahedron edgesR12

0 ,R23
0 ,

andR34
0 via which
FIG. 11. The dipole elements for interband transitions in~001! (GaAs)n(InAs)n SL on InP.
8-13
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S R12,x R23,x R34,x

R12,y R23,y R34,y

R12,z R23,z R34,z

D 5S 11exx eyx ezx

11exy 11eyy ezy

exz eyz 11ezz

D
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0 R23,x
0 R34,x

0

R12,y
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0
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0 R34,z
0
D . ~A1!

The ideal tetrahedron edges are$R0%5$@110#a/
2,@01̄1#a/2,@ 1̄10#a/2%, wherea denotes the equilibrium lat
tice constant. The local strain,e i j is then calculated by a
matrix inversion as

S 11exx eyx ezx

11exy 11eyy ezy

exz eyz 11ezz

D
5S R12,x R23,x R34,x

R12,y R23,y R34,y

R12,z R23,z R34,z

D S R12,x
0 R23,x

0 R34,x
0

R12,y
0 R23,y

0 R34,y
0

R12,z
0 R23,z

0 R34,z
0
D 21

2I ,

~A2!

whereI is the unit matrix.
Since only the trace of the strain is required, the eval

tion of Tr(e) can be simplified as
nd

et

pp

tt

tt
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Tr~e!5
DV

V
5

~R123R13!Ṙ14/6

V
21, ~A3!

whereV is the volume of the ideal, undistorted tetrahedro
i.e., V5(R12

0 3R13
0 )Ṙ14

0 /6.

APPENDIX B: CALCULATION OF THE SPIN-ORBIT
INTERACTION

The spin-orbit interaction is included in the Hamiltonia
via a nonlocal, atom-centeredp-like potential. In order to
maintain linear scaling with system size, we use the ‘‘sm
box’’ implementation of Ref. 62 to evaluate the potential.

The spin-orbit term in the Hamiltonian, Eq.~16!, consists
of finite-ranged, atom-centered potentials, assumed zero
r>r cut . Only the part ofc within r cut has contributions to
V̂SOc(r ), which leads to the following implementation. Fo
a given atom atRi , on the real-space numerical grid, w
consider a small box centered onRi . Defining cQ(r )
[c(r ) for grid points inside the small boxQ, we then treat
cQ as if it were periodic within the small box. This permi
us to use the fast Fourier transform ofcQ(r ), cQ(GQ),
whereGQ is a reciprocal lattice vector of the small boxQ.
Now in Fourier space, we can directly evaluate the nonlo
spin-orbit potential,vQ(GQ ,GQ8 ),

fQ~GQ!5(
G8

vQ~GQ ,GQ8 !cQ~GQ8 !. ~B1!

Fourier transforming the new wave functionfQ back to
real space we then add this small box of wave function b
to the full wave function. The computational effort for eac
atom is therefore fixed, independent of the total size of
system, and the cost of the method scales linearly with
size of the system.

For the spin-orbit potential itself, we adopt a Gauss
form, vp(r )5exp@2(r/0.7)2#, and rescale the amplitude o
this potential for different atoms.
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