$$+ \qquad = \Delta H_f(x_1, x_2); \tag{4}$$

 \mathbf{v} ... ΔH_f ... \mathbf{t} ... \mathbf{t} ... \mathbf{t} ... $\frac{1}{2}$ $\frac{1}{4}$ do not \mathbf{f} ,

$$i \leq 0 \qquad (i = i, ; ;); \tag{5}$$

$$2 + 3 \leq \Delta H_f(\begin{array}{cc} 2 & 3 \end{array}); \tag{6}$$

$$+ \underset{N}{\cdot} \leq \Delta H_f(\underset{N}{\cdot}); \tag{7}$$

$$_{2} + 2 + 4 \le \Delta H_f(x_1, x_2, x_4)$$
: (8)

 T_{2} , t_{2} , t_{3} , t_{4} , t_{5} , t-11.07 (-10:), i = -16.24 **f** O, $_{2-3}$, i $\mathbf{f} \mathbf{A} \mathbf{N} \cdot \mathbf{f} \cdot \mathbf{g}$

(.) n-type doping with Ga and N_2 source. Fig. 1(.) $\Delta H_f < 0$ No. 1. 1. 1. 1. $\Delta H_f < 0$ Sq. 1. 1. $\Delta H_f < 0$ Sq. 1. $\Delta H_f > 0$ Sq. 1. Δ

$$\Delta E_{b}(\ ;\ _{F}) = N^{(\)}_{\ \vec{N}}\ E_{\ \vec{N}}\ + N^{(\)}_{\ \vec{L}}\ E_{\ \vec{L}}\ + N^{(\)}_{\ \vec{N}}\ E_{\ \vec{N}}\ ; \eqno(9)$$

 \mathbf{v} . $N^{(\cdot)}$ \mathbf{f} -