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In contrast, owing to the close match of the lattice param-
eters of zincblende GaAs and MnAs, here �H�x��0 due to
unfavorable chemical interactions, leading to a different or-
der of stability, viz. Eq. �3� below.

�iii� Restricting ourself to short-period superlattices
we find that the least-unstable ones correspond to the �111�
orientation. The order of stability in the long-period limit is

�111� 	 �100� 	 �110� 	 �201� . �3�

�iv� We calculate �H�x� of the random Ga1−xMnxAs
alloy, finding that

�HR�x� = 
1x�1 − x� + 
2x
2�1 − x� + 
3x

3�1 − x�¯ �4�

is a good approximation to the first-principles result, with

1=293 meV, 
2=−390 meV, and 
3=239 meV. The for-
mation enthalpy of the random alloy has been calculated;
combining it with a mean-field approximation, we obtain
the temperature-composition phase diagram, showing the
miscibility-gap temperature below which the alloy phase
separates.

�v� The calculation of EFM−EAFM vs n for
�Ga1−xMnxAs�1 / �GaAs�n superlattices along the direction
�100� with x=0.5,1 and n=1,2 , . . . ,6 shows that these su-
perlattices prefer a ferromagnetic order. The exchange inter-
actions decay with superlattice period n more strongly for
x=1 than x=0.5. Thus, in the dilute superlattices the ex-
change interaction becomes long range. This reveals an ex-
ceptional property of dilute magnetic semiconductors,
namely that the system counterbalances dilution of the mag-
netic ions by extending the range of exchange interactions
�not to be confused with the chemical interactions �J��, hence
maintaining ferromagnetism down to small concentrations of
a magnetic ion.

II. METHOD OF ESTABLISHING THE CLUSTER
EXPANSION

We expand17 �H̃direct=�Hdirect−Eref by �H̃CE, where

�H̃CE = �HCE − Eref = J0 + �2x − 1�J1 + �
pairs

JpairDpair�̄pair���

+ �
MBITs

JMBDMB�̄MB��� . �5�

The first sum includes symmetry equivalent pairs and the
second sum includes many-body interaction types �MBITs�
f . The interaction parameters Jf are unknown energies that
are found by a fitting procedure. Df
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where the first term is the usual least square and the second
term allows a “t−
” constrained fit that enforces the spatial
decay of Jpair in terms of pair distance Rpair, with t being a
Lagrangian multiplier and � being a normalization
constant.17

Finding many-body interactions: We first define a large
set O�102� of MBITs that contain three-body, four-body,
five-body, and six-body figures. This set includes many more
terms than we eventually use. The choice of an optimal small
MBIT combination from the large set, it is done by the Ge-
neric Algorithm24 �GA�. The GA starts from initial trial com-
binations �genomes� of a fixed number of many-body figures.
Each genome is represented by a string that contains one or
zero �genes� depending on if the MBIT is or is not included
in Eq. �8�. The GA works in an iterative fashion: From the
initial trial generation of genomes, by means of mating, we
generate a new generation of trial genomes. This new gen-
eration contains newly generated children genomes that re-
place those parent genomes that produced a poor �high� CV
score in the previous generation. These new genomes are
then mated again and allowed to mutate in order to get the
next generation of trial genomes, and so on. The genomes
that produce the best CV score are kept during the next gen-
erations and are replaced gradually by better genomes. We



many-body interactions is done via a genetic algorithm. The
evolution of Sany-body



Table I. The prediction error Spred. is defined by

Spred. =
��=1
��H̃GGA��� − �H̃CE����2

NV
, �12�

for the NV=9 predicted structures in Table I, with lattice
constant ā=5.750 25 Å, the Spred.=1.34 meV/cation. The
structure with the highest prediction error is the simple

cubic 64 atoms supercell, where the two Mn atoms are
first nearest neighbors, being 1.95 meV/cation.

�c� To further test our CE, we constructed a com-
plex structure, calculated its energy via the CE, and then
compared it with a direct GGA calculation on this structure.
The structure selected was Ga56Mn8As64 with randomly
placed Mn atoms in a 4�4�4 supercell and lattice constant
ā=5.750 25 Å. We obtained �HCE=29.04 meV, �HGGA
=27.45 meV.

�d� Another test is given by a special quasirandom
structure32 �SQS�. We have used Ga6Mn2As8 SQS-14, which
is formally a �GaAs�6�MnAs�2 �301� superlattice, with lattice

constant ā=5.750 25 Å. For this structure, the values of �̄pair
for the first and third pair are exactly equal to the corre-
sponding value in a perfectly random Ga0.75Mn0.25As alloy.
To do so we first calculated the energy of a random alloy by
analytically averaging on �HCE���,

�Hrand�x� = ��HCE���� . �13�

We compare this result to direct GGA using the SQS. We
obtain �HCE=41.32 meV, �HGGA=40.04 meV.

�e� This CE has been constructed for concentrations
x�0.5, but we have tested it for zincblende Ga1−xMnxAs
structures at higher concentrations x, specifically for the case
of the superlattices �GaAs�1 / �MnAs�3 along the �100� and
�110� orientations �Z3 and Y3, respectively�. For Z3 we ob-
tain �HCE=22.33 meV, �HGGA=23.00 meV. In the case of
Y3 we get �HCE=30.00 meV, �HGGA=32.04 meV.

The comparisons �a�– �e� show that our CE is accurate to
approximately 2 meV, even for structures not used in the fit,
and even for the structures beyond the concentration range
for which the CE was constructed.

C. The random alloy

The dashed line in Fig. 5 gives the mixing enthalpy of the
random Ga1−xMnxAs alloy calculated from Eq. �13�. Note its
asymmetry with respect to x=0.5 due to odd-body interac-
tions. We can fit Eq. �4� with 
1=293 meV, 
2=
−390 meV, and 
3=239 meV. We calculate the spinodal
line from Eq. �4� using the mean field approximation for the
free energy of mixing33 Ga1−xMnxAs

�G�x� = 
1x�1 − x� + 
2x
2�1 − x� + 
3x

3�1 − x�

+ kBT�x ln�x� + �1 − x�ln�1 − x�	 , �14�

where kB

where k



D. T=0 ground state structures from exhaustive search

Having demonstrated a stable converged CE, we now
evaluate from the CE the energies of all GanMnmAsn+m com-
pounds up to N=n+m�20 cations/cell. This is an exhaus-
tive search of this space, which includes �3�106 ordered
compounds. Figure 5 shows the results, where each circle
denotes a different structure and the dashed line denotes the
random alloy. We see that the ground state line �the horizon-
tal line in Fig. 5� corresponds to phase separation into
GaAs+MnAs.

E. Superlattices

It is interesting to examine which of the structures of Fig.
5 is the least unstable. We therefore use the CE to calculate
the energies of short-period superlattices �SLs�. The results

are shown in Fig. 7



Comparing the formation enthalpies of �MnAs�1 / �GaAs�m

SLs to the bulk random alloy of the same composition �Fig.
7�, we find that SLs along �100� and �111� orientation are
lower in energy than the random alloy when the thickness of
the GaAs spacer between MnAs layers is m�2. This is also
so for the �110� orientation when m�7 and for the �201�
orientation when m�11. Thus, once formed, these superlat-
tices will not disorder at low T. Further, we calculate the
formation enthalpies of alloy SL �GaxMn1−xAs�1 / �GaAs�m

with x=0.5,0.25 and m=1, . . . ,8, along the orientations
�100�, �111�, �201�. The results are shown in Fig. 9. We

observe that Eq. �3� still holds and, as expected, the
decrease of intralayer Mn concentration tends to lower the
energy. When these alloy SLs are compared to the random
alloy, we observe that the formation enthalpies of
�Ga0.5Mn0.5As�1 / �GaAs�m SLs are lower than the random al-
loy when n�2 for the �100� and �111� orientations and n
�11 for the �201� orientation. The formation enthalpy of the
random alloy and the �Ga0.75Mn0.25As�1 / �GaAs�n SLs are
comparable.

F. Electronic structure and magnetism of superlattices

Having established the chemical energetics of superlat-
tices, we next turn to study their magnetic properties. Figure
10 shows the energy difference EAFM−EFM



�MnAs�1 / �GaAs�n, and one with more dilute Mn, i.e.
�Mn0.5Ga0.5As�1 / �GaAs�n. Interestingly, while the FM stabi-
lization energy decreases with increasing the interlayer sepa-
ration n, the decrease is much slower for the dilute SL. Thus,
as we dilute Mn, the exchange interactions become longer
range. This reveals an exceptional property of dilute mag-
netic semiconductors, namely that the system counterbal-
ances dilution of the magnetic ions by extending the range of
exchange interactions, hence maintaining ferromagnetism
down to small concentrations of magnetic ion.

Figure 11 gives the total density of states �DOS� of the
ferromagnetic short-period SLs. It is observed that all these
SLs are half-metals, and the total magnetic moment per Mn
atom is 4�B. The DOS shape is similar for the �100�, �110�,
and �111� orientations. As the SL period increases from
�GaAs�2�MnAs�1 to �GaAs�4�MnAs�1, the Fermi level moves
toward the highest occupied state of the minority spin band.
But along the �201� orientation the Fermi level shifts upward
and then downward when the SL period is increased. Also,
for the �201� orientation, the spin-up channel behaves differ-
ently from the the other three orientations: At higher energies
above the Fermi level a bandgap larger than 0.3 eV takes
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