Structure of quantum dots as seen by excitonic spectroscopy versus structural characterization: Using theory to close the loop

$$
\mathbf{r}^{A} \mathbf{y} = \mathbf{r}^{A} \mathbf{A} \mathbf{y} + \mathbf{B} \mathbf{y}^{B} \mathbf{y}^{C} + \mathbf{B} \mathbf{y}^{C} \mathbf{y}^{C} + \mathbf{B} \mathbf{y}^{C} \mathbf{y}^{C} \mathbf{y}^{C} \mathbf{y}^{C} + \mathbf{B} \mathbf{y}^{C} \mathbf{y}^{C} \mathbf{y}^{C} \mathbf{y}^{C} \mathbf{y}^{C} + \mathbf{B} \mathbf{y}^{C} \mathbf{y}^{C} \mathbf{y}^{C} \mathbf{y}^{C} \mathbf{y}^{C} \mathbf{y}^{C} \mathbf{y}^{C} + \mathbf{B} \mathbf{y}^{C} \mathbf
$$

¹National Renewable Energy Laboratory, Golden, Colorado 80401, USA *Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, NL-5600MB Eindhoven, The Netherlands School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany*

⁵*Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA*

 $R = \frac{4}{3}$ $\frac{1}{200}$ $\frac{1}{200}$ $\frac{1}{200}$

 \mathcal{N}_r 10.11034 \mathcal{N}_s **i.B** 0.165425 **Pacific s : 73.21.**, 73.21. **68.65.** 7.67.

I. INTRODUCTION

 x $\sqrt{2}$ x $\sqrt{3}$ x $\sqrt{4}$ x

B. Inverse approach: decipher structural information from the measured spectra

/ 2.5 \pm

B. Geometric size versus spectroscopic size

 \mathbb{F}_q of 4 shows the calculated strain-and-composition-and-composition-and-composition-and-composition-and-composition $g^{\mu\nu}$ and potential for electrons and holes and \mathbb{R}^n obtained for a \mathbb{R}^n with the dimensions \mathbb{R}^n and \mathbb{R}^n $X = \frac{1}{2} \int_0^{\pi} dx$ measurements $\frac{1}{2} \int_0^{\pi} dx$ and $\frac{1}{2} \int_0^{\pi} dx$, but have $\frac{1}{2} \int_0^{\pi} dx$ \mathfrak{p} at linear composition profile model \mathfrak{p} is compared with a set is $\mathbf{Q} = \mathbf{W}$ with an non-linear composition profile model $\mathbf{W} = \mathbf{X} \mathbf{W} = \mathbf{X} \mathbf$ $s = \frac{1}{2}$ see that the non-linear In profile has a much narrower region $\mathcal{F}_{\mathbf{r}}$ of confinement horizontal arrows than the QD with linear $\mu_{\rm p}$ ምክራ የመገባ መሆኑ ከመሆኑ ነው። እና የመገባ ተከታተ ነው። እና የመገባ ተከታተ ነው። እና የመገባ ተከታተ ነው። $\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mathbb{P}^{\mathfrak{p}} \times \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mathbb{P}^{\mathfrak{p}} \times \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mathbb{P}^{\mathfrak{p}} \times \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mathbb{P}^{\mathfrak{p}}$ \mathbf{x} states with 40% $_{\rm Pl}$ and $_{\rm N}$ its bottom and evolves, $\mathbf{x}^{\rm th}$ $_{\rm Pl}$ / s some nonlinear rather above a rather above a continuous continuous continuous above a continuous continuous
Some abruption above a continuous continuous continuous continuous continuous continuous continuous continuous