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Genetic design of enhanced valley splitting
towards a spin qubit in silicon
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The long spin coherence time and microelectronics compatibility of Si makes it an attractive
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T
he qubits for quantum information processing are encoded
in two-level quantum systems {|0S, |1S} (ref. 1), and can
be realized, for example, by two spin states {|mS, |kS} of an

electron at the conduction band edge of a semiconductor2–4.
Although Si enjoys a number of advantages over III–V
semiconductors in this respect, including long spin coherence
lifetime (associated with its weak spin–orbit coupling and
small content of non-zero nuclear-spin isotopes)5,6, as well as
advanced fabrication know-how, its major drawback is the
(sixfold) orbital degeneracy of its lowest conduction band
(Fig. 1a) located close to the X point in the Brillouin zone. This
is no longer a two-level system determined solely by its spin,
leading to considerable leakage and decoherence driven by the
energetic proximity among the degenerate orbitals6,7. Whereas
this six-fold valley degeneracy in the Oh-symmetric bulk Si can be
partially removed by application of tensile biaxial strain8, thus,
isolating the two lowest |þ zS and |� zS components from
the rest (Fig. 1b), the creation of a sufficiently large energy
splitting within this Z-valley subspace (hereby called valley
splitting (VS), see Fig. 1c) has proven to be a challenge for
the experimental realization of spin-only qubits in Si6. This is
clearly indicated by the very limited range of VS (of the order
of 1 meV or less) attainable for Si quantum wells surrounded
by Ge–Si alloy barriers in experiment9–15 and theory16–23, which
seriously hinders the further development of Si-based quantum
computation.

The geometry of the basic physical system explored (Fig. 1d)
includes a Si slab (well) interfaced by a material with higher
conduction band (barrier). The VS of this system depends on a
multitude of degrees of freedom present in the actual device
growth. The Si well of thickness d cladded by barrier materials of
composition Xb is coherently strained on a substrate with the
planar lattice constant as (determined by its composition
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splittings of PbSe29. In principle, the splitting within the Z-valleys
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superlattice barriers with a shorter period of 16 MLs (see
Supplementary Fig. S2a–c). Similar results are obtained for an Si
well with the thickness of 47 MLs (located at an odd peak of
Fig. 3a, see Supplementary Fig. S2d–f). To better understand this,
we explore a simple case—the fixed 40 MLs Si well embedded in
GenSin superlattice barriers with n¼ 1, 2, 4, 8, 16, as shown in
Fig. 5a. We see that the barrier of Ge4Si4 superlattice indeed
exhibits the largest VS (47 meV), whereas all other barriers
(including pure Ge) show typically low VS (o2 meV). This
indicates that the starting sublayer thinner or thicker than Ge4

seems to equally suppress VS. We unravel the underlying origin
within the EMA context. Briefly, the VS induced by an Si/Ge
(ascending offset) interface has opposite sign to the Ge/Si (des-
cending offset) interface with the same wave-function. Choosing
the interface positions to match the maxima/minima of the VS at
the ascending/descending interfaces would maximize the total VS.
It is impossible to match the interface positions perfectly to the
incommensurate oscillations of well-thickness-dependent VS
(Fig. 3), but the Ge4 sublayer is the closest we can get to this
matching within the bilayer growth constraint we impose (better
commensurability would be achieved if we chose to analyse any
layer thickness, including odd numbers of MLs). Conversely,
starting with a Ge2 sublayer cladding the Si well, we find a
destructive interference, in agreement with the suppressed VS for
Ge2Si2 superlattice barrier in Fig. 5a. This engineering is analo-
gous to that of a distributed Bragg reflector (see Supplementary
Note 3 for detailed description). But the fact that the oscillations
are incommensurate with the lattice and the strong dependence
of VS on atomic ordering makes it impossible to analytically

http://www.nature.com/naturecommunications


nature of alloys induces disorder ranging from the geometry of the
interface plane to the inhomogeneous strain fields39. The leakage
of electrons tunnelling through the superlattice barrier should also
be suppressed as the electronic density inside the barrier is much
reduced. The structure we proposed is accessible within the current
experimental fabrication capabilities such as the molecular beam
epitaxy8,38,40,41 and chemical vapour deposition8,40–44. Particularly
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