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This behavior is readily observed during the alignment of cells and collagen fibers in directions
of maximum tensile stresses [5–7] and maximum effective stiffness. A key to understand these
phenomena resides in our ability to characterize how cells interact with their environment and espe-
cially how they are able to sense their mechanical surrounding and react by producing contractile
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overall deformation has been addressed in a previous study [15]. We show here that this feature can
be naturally coupled with a model for SF remodeling to capture realistic cell behaviors. At last, the
level set method is ideal to model phenomena such as growth and evolution [24], which are inherent
in cell spreading and remodeling. The present framework, although not addressing the problem of
growth, is an important stepping stone to engaging in such study in the future.

The organization of the paper is as follows. In the next section, we give a summary of the con-
strained mixture model to characterize cell contraction; we particularly concentrate on providing
the main equations (conservation of mass and momentum) as well as a set of biologically relevant
assumptions to build realistic constitutive relations. In Section 3, the problem of the interaction
between a cell and a deformable substrate is investigated. Governing equations are derived in both
their strong and weak form, which enables a smooth transition to the finite element formulation
presented in Section 4. Section 4 then discusses the XFEM–level set approach to obtain a solution
of the cell–substrate interactions, leading to the final form of implicit, time-dependent finite element
equations. The method is then illustrated in Section 5 by presenting several experimentally moti-
vated example of cell–substrate interactions with comparison to observations. The paper finishes
with a brief summary and concluding remarks.

2. A CONSTRAINED MIXTURE MODEL OF CONTRACTILE CELLS

2.1. Continuum description of cell’s structure

The mechanosensing capability of cells is closely related to their contractile abilities. The latter
has mainly been explained in terms of the formation of a well-differentiated network of SFs that
are capable of generating forces through actomyosin interactions [14, 25, 26]. The main processes
behind cell contraction can generally be decomposed as follows: first, the assembly of SF from dis-
solved contractile units and second, the contractile capacity of SFs. On the one hand, SF assembly
and dissociation are known to be very sensitive to mechanical stimuli; mechanical force stabilizes
existing SFs and promotes the assembly of new ones [26]. On the other hand, the contractile capac-
ity of SFs is regulated by cross-bridge dynamics, which is known to be very sensitive to strain
and strain rate. The evolution of SF therefore depends on the ability of cells to sense and transmit
mechanical force from the substrate through so-called focal adhesion complexes (Figure 5) [27].
These complexes provide a physical attachment between SFs and substrate-anchoring molecules
(ligands) through cross-membrane proteins (integrins) and may be thought of as cohesion islands of
finite size between cell and substrate [28, 29]. At last, the internal structure of fibroblasts possesses
sub-membranous mechanical reinforcement, known as the cortex, which is found in the form of a
thin layer of actin fibers oriented in parallel with the membrane [9,30–32]. This component is known
to have a significant effect on the cell’s morphology and deformation by providing a non-negligible
tangential stiffness to the cell membrane [15].

From a modeling perspective, cell and substrate can be defined by two physical domains �c

and �s in their current configuration, whose boundaries are denoted by �c and �s, respectively
(Figure 1). Whereas a substrate is modeled as a purely elastic medium, a contractile cell is viewed

Figure 1. A typical cell on a substrate: the definition of domains and boundaries and a cell’s
main constituents.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:238–267
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as a constrained mixture made of four constituents [14] (Figure 1): two solid constituents, a passive
cytoskeleton (mostly made of microtubules and intermediate filaments) and a highly anisotropic
SF network, and two fluid components, the cytosol and a population of dissolved contractile units.
Measuring material motion with respect to the passive cytoskeleton, for which a point in the orig-
inal configuration is denoted by X, we can give a description of the mixture at any time t in terms
of respective volume fraction �˛ of the diverse constituents. Considering a saturated mixture, it
can further be shown that the summation of all volume fractions at a point is equal to 1, that is,P4
˛D1 �˛.X, t / D 1, where ˛ D s, f, m, p for passive cytoskeleton, cytosol, dissolved contractile

units, and SFs, respectively. When placed on elastic substrates, fibroblasts usually evolve quickly
in a configuration in which their thickness is significantly smaller than other dimensions, which
motivates our study within the context of two-dimensional plane stress assumptions. This generally
simplifies the analysis as SF directions only occupy the two-dimensional space and can be described
in terms of one orientation angle. At any point within the cell, the SF network may then be defined
in terms of the so-called structure tensor ˆp given by [14]

ˆp.X, t / D �p
�
�I C .1 � 2�/ M�0

�
, M�0 D

�
cos2 �0 cos �0 sin �0

cos �0 sin �0 sin2 �0

�
, (1)
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Figure 2. Equilibrium of forces in the body and the boundary of a cell.

2.3. Balance of momentum

Let us now turn to the governing equation describing the equilibrium of forces within a cell
(Figure 2). For this, it is of interest to define the mixture Cauchy stress tensor T representing the
infinitesimal force per unit current area. Using the effective stress principle, we can decompose the
mixture stress into a contribution from each constituent,

T D Tc C Tp � pI, (7)

where Tc is the partial stress in the passive cytoskeleton, Tp is the stress that originates from the
presence of SFs, and p is the fluid pressure. Note that the contribution from the pressure of dissolved
contractile proteins has been neglected because of its relatively low volume fraction. Considering
the balance of momentum for the mixture, we can derive the form

r � T C b D 0 in �c, (8)

representing the balance of force within the cell domain. Note that dynamical effects (through the
inertial term) were neglected because of the slow processes into consideration. Finally, we note that
by invoking the balance of angular momentum, we can show that stresses Tc, Tp
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Here, � denotes the isotropic permeability of the cytoskeleton and � is the viscosity of the cytosol.
Note that because of the appearance of SF, the permeability may become anisotropic in time. This
effect is not accounted for in the present study. In addition, we assume that the motion of dis-
solved proteins is driven by two forces: (1) the drag force of the cytosol and (2) the diffusive forces
through the cytosol. One can therefore show that the flux Jm of proteins contains a convection and
diffusion term,

Jm D �
�m

�f

�

�
rp � �fD r

�
�m

�f

	
, (11)

where D is the diffusion coefficient of dissolved proteins in the cytosol.
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their contribution in each direction. Assuming that the normalized uniaxial stress in a specific
direction is given by the product of functions g and f , weighted by their volume fraction �p,
the stress Tp is defined by

Tp D
NT

�

Z �=2

��=2

�p.�/f ."/ g .P"/

�
cos2 � cos � sin �

cos � sin � sin2 �

�
d� , (19)

where " is related to the Green–Lagrange strain tensor E by " D E11 cos2.�/ C E22 sin2.�/ C
2E12 sin.�/ cos.�/ and the quantity NT denotes the typical magnitude of SF isometric contrac-
tion in fibroblasts. Note that the value of �p for different directions is determined from the
knowledge of the structure’s tensor ˆp as described in [14].

A particularity of the preceding model of cell contraction is that it generates a positive feedback
mechanism between fiber contraction and formation in the direction in which fiber shortening is
mostly resisted. For instance, when cells adhere to a stiff substrate, their contraction only generates
little deformation, which according to the tension–velocity curve enables SF to keep a level of iso-
metric contraction. The presence of such a contraction consequently promotes more SF formation in
this particular direction as described by the mechanosensitive formation model of (16). Inversely, a
cell adhering to a soft substrate generates a significant amount of negative strains as a result of con-
traction. This results in switching the strain rate to the left of the tension–velocity curve in Figure 4
and thus decreasing the magnitude of SF contraction. Ultimately, this is translated into a drop in the
rate of fiber formation and a loss of SF density.

3. GOVERNING EQUATIONS FOR THE CELL–SUBSTRATE INTERACTION PROBLEM

We now turn to the formulation of the interactions between cells and their mechanical environment.
We particularly concentrate on the problem of cells lying on a two-dimensional elastic substrate, a
situation that often arises both in vivo and in experiments.

3.1. Substrate elasticity

The mechanical behavior of the substrate is known to be an important factor driving cell
morphology, contraction, and structure [27, 31, 39–41]. Although this behavior can be extremely
complex, involving nonlinear elasticity, viscous effects, and inelasticity, the present work concen-
trates on the case of a simple linear isotropic elastic material with varying stiffness. Describing
substrate deformation in terms of a displacement field us, one can introduce a rate of deforma-
tion and an objective rate for the substrate Cauchy stress Ts in a similar form as that shown in
(12). In other words, substrate elasticity is described in terms of two parameters (	s, �s) or equiv-
alently by the set (Es, �s) denoting Young’s modulus and Poisson’s ratio, respectively. It is finally
straightforward to show that substrate equilibrium is written in terms of the divergence of the
Cauchy stress as

r � Ts C bs D 0, (20)

where bs represents the body force vector in the substrate. In the following analysis, we assume that
the substrate consists of a very thin layer that can be modeled in plane stress conditions. Although
this situation may not accurately represent actual experimental conditions, the assumption is not
expected to affect the main trends exhibited by cell in terms of different substrate elasticities.

3.2. Adhesion complexes

Cell–substrate adhesion is provided by the attachment between transmembrane molecules (known
as integrins) and molecular complex (the ligands) lying on the surface of the substrate (Figure 5).
Integrins easily diffuse through the cell membrane [42] to attach to free ligands on the substrate. It
is thus realistic to assume that the magnitude of the adhesive force ta per unit area is directly related
to the density �l of ligands on the substrate by

ta D �lfa, (21)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:238–267
DOI: 10.1002/nme
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Figure 5. The general details of adhesion complexes between cell and substrate combined of integrins and
ligands; together with the boundary conditions applied to cell and substrate.

where �l denotes the number of ligands per unit substrate area and fa is the force in a single
ligand–integrin complex. Further assuming that the mechanical behavior of a ligand–integrin com-
plex is represented by a linear force–separation relation with stiffness Kli, the continuum traction
force (per unit area) is given by

ta D Ka .uc � us/ , where Ka D �lKli, (22)

where the term uc � us represents the separation between the cell membrane and the substrate sur-
face. The preceding equation clearly states the stiffness of the adhesion stiffness increases linearly
with ligand density. It also shows that if no ligands are present �l D 0, no cell–substrate adhesion is
possible (ta D 0).

3.3. Summary of the governing equations under plane stress conditions: strong form

Considering that the cell and the substrate lie in the x–y plane of the (x, y, ´)-coordinate system,
plane stress conditions imply that stress components associated with the ´-direction vanish. In addi-
tion, adhesion forces ta acting on the bottom cell surface and the top substrate surface are represented
by vectors in the x–y plane and are equivalent to ‘body forces’ acting in the cell and the substrate
with equal magnitude but in opposite directions. In other words, the body forces b and bs appearing
in (8) and (20) are replaced by adhesive forces such that the mechanical equilibrium for cell and
substrate is written as follows:

r � Ts C ta D 0 in �s us D u� on �s, (23)

r � T � ta D 0 in �c T � n D r� � T� on �c. (24)

Note that the elastic constitutive relations are affected by the plane stress conditions. For clarity,
a detailed description of these equations is left in Appendix A. In addition, one can show that
mass conservation equations ((2) and (3)) in the cell domain �c under plane stress conditions take
the form

˛ r � v C ˇ Pp C r � Jf C r � Jm D 0 in �c Jm � n D 0 on �c, (25)

D�f

Dt
C ˛�f r � v C ˇ�f Pp C r � Jf D 0 in �c Jf � n D 0 on �c, (26)

where coefficients ˛ and ˇ depend on Poisson’s ratio � and Young’s modulus E of the cell’s
cytoskeleton as follows (Appendix A):

˛ D
1 � 2�

1 � �
and ˇ D

.1 C �/ .1 � 2�/

E .1 � �/
.

Similarly, the SF evolution equation (5) becomes

Dˆp

Dt
Cˆp ˛ r � v Cˆp ˇ Pp D…p in �c. (27)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:238–267
DOI: 10.1002/nme
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In the end, the five equations ((23), (24), (25), (26), and (27)) subjected to the given boundary con-
ditions can be solved to determine five unknowns that consist of the following: (1) the displacement
field us.X, t / in the substrate domain �s; (2) the displacement field u.X, t / in the cell domain �c;
(3) the cytosol volume fraction �f.X, t / in �c; (4) the monomer volume fraction �m.X, t / in �c;
and finally, (5) the structure tensor ˆp.X, t / describing the SF distribution in �c.

3.4. Summary of the governing equations: weak form

The earlier coupled differential equations constitute a highly nonlinear system whose solution lies in
the three-dimensional space .x, y, t /. A numerical strategy based on the FEM is therefore necessary
to obtain a solution in the most general case. Such a formulation requires that governing equations
are rewritten in an integral form (or weak form) as described in this section. For this, we introduce
arbitrary admissible weighting functions denoted by scalars functions � and 	, vector functions !
and!s, and a second-order tensor functionƒ. Multiplying each governing equation ((23), (24), (25),
(26), and (27)) with a corresponding weight function and integrating over their associated domain,
we obtain five scalar equations as follows:Z

�s
!s �

,,
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4. LEVEL SET–EXTENDED FEM FORMULATION

4.1. Numerical strategy for cell–substrate interactions

From a numerical viewpoint, the cell–substrate interaction under plane stress assumptions involves
two superposed domains �s and �c, of arbitrary shapes, on which different, but interacting, fields
must be computed (Figure 1). To solve such a problem, two strategies may be adopted. The
first would consist in introducing different discretizations for each domain, on which solutions
would be computed separately but can interact through a numerical treatment of the interactions at
cell–substrate adhesions. The second, introduced in this paper, only requires a single discretization,
used for both cell and substrate. In this approach, whereas the substrate domain �s is entirely con-
tained in the computational domain, the cell domain �c is defined in terms of a level set function
that defines the arbitrary contour of the cell.

Referring to Figure 6a, the level set function �.X/ is a function of space (in the undeformed
configuration) that is represented by a two-dimensional surface in a three-dimensional space. The
two-dimensional morphology of the cell is then defined as the intersection of this surface with the
x–y plane of the cell (Figure 6a). The function � is chosen such that its sign is opposite in two sides
of the cell boundary, which enables a clear definition concerning the location of material point P
located at X with respect to the cell domain:

if �.X/ > 0, P 2 �c, (38)

if �.X/ D 0, P 2 �c, (39)

if �.X/ < 0, P … �c. (40)

In addition, the level set function enables the definition of the unit vector n0 that is normal to the
cell boundary �c in its original configuration,

n0.X/ D
rX�.X/

jjrX�.X/jj
, (41)

where rX denotes the gradient with respect to the initial coordinate X and jj�jj denotes the L2 norm.
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morphologies. In numerical simulations, this leads to significant issues with meshing, espe-
cially when three-dimensional shapes are considered. The presented method circumvents this
issue by defining a shape geometry using a mesh-independent level set function. We note that
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The function H.x) is used to introduce a jump in the fields Puc, Pp, P�m, and P̂ p
across the cell’s mem-

brane, whereas the ridge function is used to define discontinuities in their spatial derivative [21,50].
A one-dimensional representation of the Heaviside and ridge functions is provided in Figure 6b
and c

4.3. Discretization and time integration

The linearized finite element equation is obtained by substituting the XFEM approximation (42)
corresponding to each continuum field us, u, p, �m, andˆp into the linearized weak-form equations
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Table I. Parameters used in the simulations.

Definition Symbol Value Unit Reference

Cytosol volume fraction �c 70 % [53]

Cytoskeleton volume fraction �s 25 % n/a

F C G actin volume fraction �m C �p 5 % n/a

Rate of SF formation kf
0 0.0001 s�1 [54]

Mechanosensitive rate of SF formation kf
1 0.05 s�1 [54]

Rate of SF dissociation kd
0 0.1 s�1 [54]

Cytoskeleton permeability �=� 1 � 10�15 m4=N � s [55]

G-actin diffusion constant D 1 � 10�5 m2=s [54]

Young’s modulus E 70 Pa [12]

Poisson’s ratio � 0.3 [12]

Fiber maximum tensile stress NT 20,000 Pa [33, 56, 57]

Reference strain rate (Equation (17)) P"
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where the parameters � D 0.615 and � D 0.675 were obtained for the XFEM and the FEM, respec-
tively, for q D 1 [58]. Note that the values of the parameter � for the FEM and the XFEM are
calculated for the same time step, and the lower value of � for the XFEM indicates a better rate of
convergence in comparison with FEM.

5.2. Effect of cell morphology on stress fiber development

As noted in the previous section, one main advantage of using the XFEM–level set approach
relies in that cell geometry can be defined independently from discretization. In this example, we
take advantage of this capability to investigate the SF evolution in three cells, characterized by
different geometries (square, rectangle, and triangle) and substrate adhesion (Figure 10a–c) on an
elastic substrate whose elastic modulus is 100 Pa. Because of their simple geometries, square and
rectangular cells can easily be handled with the ordinary FEM; for validation purposes, we therefore
compute solutions using both the XFEM and the FEM, when subjected to the same element size.
In addition, although initial conditions are the same as in the previous section, we applied periodic
boundary conditions on the substrate domain to simulate an infinitely large domain with a periodic
cell’s structure. More details on this approach are given in [59].

Figure 10d–f shows the first stress invariant in the substrates due to cell contraction at steady
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with experimental observations for similar conditions (the insets of Figure 10g–i) [60–63]. Here,
our results show that SFs are preferably generated in directions of maximum apparent stiffness,
corresponding to lines connecting adhesion islands. This can be explained as follows. In direc-
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A relevant question in biology is to understand how the mechanical work performed by cells is
affected by the stiffness of the substrate they lie on. Here, we assess the average mechanical work
of a cell as W D Fd , where F is the average force it applies to its focal adhesion and d is the
resulting average displacement. Figure 12 shows the changes of work W as the relative substrate’s
stiffness varies from 0 to 1000
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APPENDIX B: INCREMENTAL WEAK FORM OF THE GOVERNED EQUATIONS

Before writing the incremental form of the set of derived equations, we need to find equations
for ı�f and P�f D D�f=Dt as a function of cell’s variables. As mentioned before, cell’s body
is assumed to be saturated by four constituents: cytoskeletal network, cytosol, SF polymers, and
G-actin monomers; consequently, one can write �f C�c C�p C�m D 1. After deriving the material
time derivative of the latter equation, we obtain the formula P�f D P�c � P�p � P�m, where � denotes
the volume fraction of each cell’s component and the superscripts f, c, p, and m stand for cytosol,
cytoskeleton, polymers, and monomers, respectively. Furthermore, following [14] and considering
plane stress condition for the cell, the balance of mass equation for cytoskeleton takes the following
form: D�c=Dt D P�c D ��c ˛ r � Pu � �c ˇ Pp.

As a result, ´
P�f D �c ˛ r � Pu C �c ˇ Pp � tr



P̂ p

�
� P�m

ı�f D �c ˛ r � ıu C �c ˇ ıp � tr .ıˆp/ � ı�m
. (B.1)
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Z
�c
ƒ W

"
P
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Furthermore, the following definitions will be used for discretization:

!s D Ns �!s,eI !D N �!eI � D Nf � �eI 	 D Nf ��eI ƒD Np �ƒe , (C.8)

us D Ns � us,eI u D N � ueI p D Nf � peI �m D Nf �ˆm,eI ˆp D Npˆ
p,e , (C.9)

r!s D Bs �!s,eI r!D B �!eI r� D Bf � �eI r	 D Bf ��e , (C.10)

rus D Bs � ueI r! D I r�

I � � ! D � u!
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!e
T

Z
�c,e

�
BT �



¹ QTcº C ¹ QTpº C ¹Ccº � B � ıue C ¹¹Tcºº � G � ıue

C
¹@Tpº
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In the preceding equations, mT D ¹1 1 0º, and the matrix Mp is defined such that in Voigt notation
one can write ¹A�º D Mp � ¹Aº, where ¹A�º and ¹Aº are vector forms of symmetric tensors A� and
A, respectively. As a result, the matrix Mp takes the following form [48]:

Mp D

2
64 P 2

11 P 2
12 P11P12

P 2
12 P 2

22 P22P12

2P11P12 2P22P12 P 2
12 C P11P22

3
75 . (C.25)

Also, the cortex’s stiffness matrix ¹S�º can be calculated by using its elastic matrix ¹C�º by
¹S�º D MT

p � ¹C�º � Mp. Furthermore, the notation ¹Cº is used to define the fourth-order constitutive
matrix C as a second-order matrix in Voigt notation.

APPENDIX D: COMPONENTS OF FINAL EQUATION (46)

The components of Equation (46) are given by the following:

Fu
s,e D

Z
�s

BsT � ¹ QTsº d�s �

Z
�c

NsT � Qta d�c, (D.1)

Fu,e D

Z
�c

h
BT



¹ QTcº C ¹ QTpº

�
� QBT � p C NT � Qta

i
d�c C

Z
�c

BTMT
p � ¹ QT�ºd�c, (D.2)

Ff,e D

Z
�c

Bf
T

"
�

�
Bf � pe C

 
Q�m

Q� 

Q 
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Kfu,e D

Z
�c

BT
f

Q�m

Q�f

�
�

1

Q�f

�

�
Bf � pe C

1

Q�f
D r Q�f

	
� Q�c ˛ QB d�c

�

Z
�c

BT
f

Q�m

Q�f
D B



Q�c ˛ QB

�
d�c, (D.12)

Kff,e D

Z
�c

BT
f

 
1 C

Q�m

Q�f

!
�

�
Bf d�c

C

Z
�c

BT
f

Q�m

Q�f

�
�

1

Q�f

�

�
Bf � pe C

1

Q�f
D r Q�f

	
� Q�c ˇ Nf d�c

�

Z
�c

BT
f

Q�m

Q�f
D B

�
Q�c ˇ Nf

�
d�c, (D.13)

Kfm,e D

Z
�c

BT
f

�
1

Q�f

�

�
Bf � pe � Nf C D Bf �

1

Q�f
D r Q�f � Nf

	
d�c

C

Z
�c

BT
f

Q�m

Q�f

�
�

1

Q�f

�

�
Bf � pe C

1

Q�f
D r Q�f

	
� .�Nf/ d�c

�

Z
�c

BT
f

Q�m

Q�f
D B .�Nf/ d�c, (D.14)

Kfp,e D

Z
�c

BT
f

Q�m

Q�f

�
�

1

Q�f

�

�
Bf � pe C

1

Q�f
D r Q�f

	
�
�
�mT � Np

�
d�c

�

Z
�c

BT
f

Q�m

Q�f
D B

�
�mT � Np

�
d�c, (D.15)

Kmf,e D

Z
�c

BT
f �

�
�

�
Bf

	
d�c, (D.16)

Kpu,e D �

Z
�c

NT
p

 
A4m91�

d�
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and

Cff,e D

Z
�c

Nf
T Œ ˇ Nf
 d�c, (D.23)

Cmu,e D

Z
�c

NT
f �

�
�c C �f

�
˛ QB d�c, (D.24)

Cmf,e D

Z
�c

NT
f

�
�c C �f

�
ˇ Nf d�c, (D.25)

Cmm,e D

Z
�c

NT
f .�Nf/ d�c, (D.26)

Cmp,e D

Z
�c

NT
f

�
�mT � Np

�
d�c, (D.27)

Cpu,e D

Z
�c

"
NT

p � ¹ˆpº ˛ QB � Pue � NT
p �

M p

M m
k
f
1

�
@¹Tpº

@¹ PEº
� Fm � B

	
Q�m

Q�f

#
d�c, (D.28)

Cpf,e D

Z
�c

NT
p � ¹ˆpº ˇ Nf d�c, (D.29)

Cpp,e D

Z
�c

NT
p � Np d�c. (D.30)
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