A mathematical model of the coupled mechanisms of cell adhesion, contraction and spreading

Franck J. Vernerey · Mehdi Farsad

Recei, ed: 11 No, embe 2011 / Re, j ed: 23 Jan_i a 2013 / P_i blj hed online: 6 Ma ch 2013 Sp inge -Ve lag Be lin Heidelbe g 2013

Abstract Recence e each ha, ho n ha cell, p eading i highly dependen on he concar ac ili of i, c, o kele on and he mechanical p oper ie of he en i onmen i i loca ed in. The d namic of, t ch p oce, i c i ical fo he de elopmen of i, t e enginee ing, a eg bt i al o a ke pla e in ot nd con ac ion, i, t e main enance and angiogene i. To be e_i nd e_j and he_i nd e_l ing ph, ic, of i ch phenomena, he pape de ç ibe a ma hema ical fo m_i la ion of cell, p eading and con ac ion ha co_i ple, he p oce, e, of, e, be fo ma ion, p o, i, ion g o h h oi gh ac in pol, me i a ion a he cell edge and d namic of $c \circ$, -memb ane p \circ ein (in eg in) enabling cell; ib; a e a achmen. The e ol ing cell; c, o kele on j modeled a a mi i e of id, poein, and Alamen, ha can e change ma, and gene a e con ac ion. In pa ic_i la, be ide, elf-a, embling in o_{i} , e_{i} , f_{be} , ac in monome, able o poleme i e in o an ac in me h o k a he cell', bo_i nda in o de o p_i , h he memb ane fo a d and gene a e p o, i, ion. The e p oce, e, a e po, ible ia he de elopmen of cell-, $i b_i$ a e a achmen comple e ha a j e f om he mechano- en i i e ef_i ilib i_i m of memb ane p o ein, kno n a in eg in . Af e de i ing he go e ning ef a ion d i ing he denamic of cell e oli ion and, p eading, e in odi ce a ni me ical, oli ion ba ed on he e ended. In e elemen me hod, combined i h a le el, e fo m_t la ion. N_t me ical, im_i la ion, ho ha he p opo, ed model j able o cap $_{i}$ e he dependenc, of cell, p eading and con_ ac ion on, ib, a e, iffne, and chemi, The e good ag eemen be een model p edic ion, and e pe imen al ob, e a ion, , gge, ha mechanic, pla, a, ong ole in o he coi pled mechani m, of con ac ion, adhe ion and, p eading of adhe en cell.

Mathematical Subject Classification 92B05 · 74S05 · 74F20

F. J. Ve ne $e_{\mathbf{N}}(\boxtimes) \cdot M$. Fa, ad

Depa men of Ci il, En i onmen al and A chi ec L al Enginee ing,

Uni e, i of Colo ado, Boi lde, USA

e-mail: f anck. e ne e @colo ado.ed_l

991

mechani, m, of, e_{t} , the o ien a ion i h mechanical fo ce ha e been a, e, ed b a ie of model, , ome ba ed on p_{t} el, he mod namical a g_t men, (Fo_t ca d and Ve ne e, 2012; S ameno_ic e al. 2009) and, ome ba ed on biochemicall, a g_t men, incl_t ding, ignalling pa h a (Ci_elekogl_t -Schole, e al. 2005). A he cell_t la le el, he de elopmen of global, e_{t} , the, o gani a ion, con ac ion and adhe ion ha e ecen l been he objec of a fo m_t la ion (De hpande e al. 2008) ba ed on empi ical_ela ion, hip de c ibing he mechanicall, d i en di, ocia ion of, e_{t} , the, and in eg in d namic. A, imila con in_{t t} m app oach a la e in_od_t ced i hin he

Fig. 1 Gene al con ${}^{h}g_{L}$ a ion of an ci c_{i} la cell loca ed on an ela ic, ${}_{i}b_{j}$, a e i h a ep e en a ion of he h ee fo m of ac in con ide ed in hi, ${}_{i}d_{k}$; glob_i la, h lamen o_i, and b_i ndled (${}_{i}e_{j}$, ${}^{h}be_{j}$)

he ac in c, ϕ kele on a a mi ι_{c} e of fo_{ℓ} majo con i ι_{t} en, ι_{e} ep e en ing he c, ϕ ol and ac in in h ee diffe en fo m; glob_l la, *P*lamen o_{ℓ} , and b_{ℓ} ndled (Fig. 1). In i, glob_l la fo m, ac in ea il, diff_l, e h o_{ℓ} gho_l he c, ϕ kele on and h_{ℓ} , may be ep e en ed a a ι id pha e in he p e en, ι d. In i, *P*lamen o_{ℓ} , fo m, ho e. e, ac in

$$\begin{array}{c} \cdot \\ + \\ \left(\underbrace{-v} \\ + \underbrace{v} \\ + \\ \end{array} \right) + \\ \left(\begin{array}{c} \cdot \\ + \\ - \\ - \\ - \\ \end{array} \right) = 0$$
 (7)

$$\left(\frac{V}{V} + \frac{V}{V}\right) + \frac{V}{V} + \left(\frac{V}{V} + \frac{V}{V}\right) + \frac{V}{V} = 0$$

$$(8)$$

$$(8)$$

$$(9)$$

$$+ \left(-+-\right) + = 0 \qquad (9)$$

$$\cdot + \frac{1}{1+} \left(-+++\right) + F = 0 \qquad (10)$$

he e $\mathbf{I} = 1 \mathbf{1}^{T}$, i he c, o ol p e, t e, \mathbf{T} he pa ial, e, in he pa, i e c, o kele on and \mathbf{T}^{F} he pa ial, e, ind_i ced b, e, t be. We no e he e ha he e m, pa, i e c, o kele on a j, ed on a b oad, en e a i e p e en, a n_i mbe of po, ible componen, con ib_i ing o he cell ela ici. Thi incl_i de fo in ance, mic o t b_i le, in e media e lamen, and he memb ane loca ed on op and he bo om of a plana cell. A, t ming, mall defo ma ion (ain a e picall le, han 10% in he p oblem of in e e), a linea ela ic ela ion can be t, ed o de c ibe he pa, i e c, o kele on e pon e:

$$E = \frac{E}{1 - 2} (+) + \frac{1}{1} = , \text{ and } = , \quad (13)$$

he e = 1 and = . The ma e ial pa ame e, E and $ep e en he Yo_i ng', mod_i l_i, and Poi, on', a io, e pec i el hile he adial and ci c_i mfe en ial linea , ain, and a e ela ed o he adial di placement b = <math>\frac{1}{4}$ and $\frac{1}{4}$. A di c_i, ed in mo e de ail in Ve ne e and Fa, ad (2011), he pa ial, e, \mathbf{T}^{1_F} of , e, the, i p opo ional o he ol_i me f ac ion, F and a i e f om o diffe en , o_i, ce : ac i e con, ac ion and pa, i e ela ic, e pon, e. We he efo e i e:

$$F = F(\mathcal{E}_1 + F^*) = , \qquad (14)$$

he e he coef cien E_1 deno e he, iffne, of , e, . be, hile he con_acile , e, * i he e i l of ac o-m o in c o, -b idge d namic a he a come ic le el (Ve ne e and Fa, ad 2011). Al ho, gh, a come e fo ce i kno n o depend on he a e of con_acion a p edic ed b, he Hill model (Hill 1938), e choo e o neglec hi a pec fo he p e en, i d and con ide ha he con_acile, e, i con an and efit al o ha fot nd in a, a e of i ome_ic con_acion. Thi a, t mp ion i mo i a ed b, he fac ha cell, p eading i a, lo p oce, compa ed o he cha ac e i ic ime-, cale of c o, -b idge d namic and i he efo e in en i i e o he a e of elonga ion of, a come e . Finall, fo ce efit ilib it m in he mi t e follo, f om he balance of linea momen t m. Unde a i mme_ic and plane, e, condi ion, hi jield :

$$\underbrace{}^{\mathbf{k}}_{-} + \frac{1}{2} \underbrace{}^{\mathbf{k}}_{-}) - = 0$$
 (15)

In abo e et a ion, deno e he hickne, of he cell and _ ep e en, he dj _ ibt ed _ ac ion fo ce on he memb ane a j ing f om he in e ac ion i h he t nde l ing, t b, a e _ ia focal adhe ion. While hi fo ce j applied a he bo om of a cell h ot gh i, memb ane, i j et i alen o con ide i a a angen ial bod fo ce applied o he c o kele on b in oking plane, e, a, t mp ion. To mall cha ac e i e he beha io of he t nde l ing, t b _ a e, i j . , t, et l o no e ha i, hickne, j t, t all mt ch la ge han ha of cell. In hi, i t a ion, _ e, _ a ia ion, a e e pec ed in a m V

ι

Fig. 3 In eg in ligand comple $e : \mathbf{a}$ ligand, lo $at^{\mathbf{A}}$ in \mathbf{v} in eg in, and bo_t nd/_t nbo_t nd high-at^{\mathbf{A}}ni \mathbf{v} in eg in, **b** in eg in, **a** e, $\mathbf{c}_{\mathbf{c}}$ ela i, e di placemen be een **v**o, ide of in eg in ligand comple

$$\mu = \mu \tag{17}$$

a eq_i ilib i_i m. A lo concent a ion, i_i nbo i_i nd lo afteni in eg in can picall be ie ed a a dil i_i e ol i_i ion in he i_i id pho pho-lipid memb ane, i_i ch ha hei chemical po en ial inc eq e i h hei a ea den i a follo :

$$\mu = \mu_0 + \ln\left(-\frac{1}{0}\right) \tag{18}$$

he e μ_0 and $_0$ a e he f ee ene g, and concent a ion of lo -afteni in eg in in , anda d condition, e pecitel. The chemical, abilit of high afteni in eg in j kno n o depend on he amot n of en ile force hera e, t bjec ed o (Sheme h e al. 2005; Petol e al. 2003; Tan e al. 2003). In o hero od, hen in eg in phyticall a ach o, t b, a e ligand, cell cont action (f om, e, t be) igge, a, e ching force on he in eg in thich end o increate heit, abilit. To cap the high phenomenon, i j, find a condition of the e i ence of high internition eg in in o condition: ho e hich a e bot nd (i h concent a ion for a light) and ho e hich a e t nbot nd (i h concent a ion force) a e ligand. Follo ing Lat ffenbt ge and Linde man (1993), he concent a ion force a follo the e pet, ed a function of he t nde light concent a ion follo the e pet, ed a function of he t nde light concent a ion follo the e pet, ed a function of he t nde light concent a ion follo the e pet. End a function of he t nde light concent a ion follo the e pet.

$$=\frac{1}{1+} \qquad (19)$$

Thi, e p e, ion clea l, ho, ho inc ea ing he ligand concent a ion end, o p omo e he a achmen of in eg in, o he, t b, a e. The, abilit a ion of in eg in, i h , e ch ha, hen led o he follo ing form of heit chemical po en ial (De hpande e al. 2008): hẹ e μ_0

To cha ac e i e he memb ane ela, ici i i_{t} ef_t l o in od_t ce he ela, ic po en ial (*E*), t ch ha he memb ane, e_{t} , ead :

$$= -\frac{1}{E}F \text{ and } (E) = \frac{1}{2} (E)^2$$
 (29)

He e F = 1/0 i he defo ma ion g adien, $\frac{1}{0}$ i he p e-e i ing, $\frac{1}{2}$ face en ion and i he, iffne, of he cell memb ane. The mechanical eff_i ilib i m of he memb ane i h c o kele on $\frac{1}{2}$ e, e i hen gi en b he, and a d eff_i a ion (Ve ne e 2011; Ve ne e and Fa, ad 2011):

$$\mathbf{T} \cdot \mathbf{n} = \mathbf{T} \implies \mathbf{k} = -$$
(30)

he e **T** i he, e, e, o in he c o kele on, **n** i he o_t a d no mal o he cell, i he, face g adien ope a o and **T** = **e** i he, face en ion ec o. I can be, ho n ha d_t e o o_t a i mme_ica, mp ion, hi ef_t a ion ed_t ced o he imple form ho n in he igh end, ide of (30) in hich deno e he adial, e, on he bo_t nda

2.3 Memb ane p o_{j} , ion and cell g o h

Le $_{i}$, no concen, a e on he he phenomenon of memb ane p o, $_{i}$, ion f om a ph_ical ie poin. Thi a pec of cell mechanic i kno n oin ol e, ong in e pla, be een ac in pol me i a ion a he cell' edge and memb ane e i ance (C_i elie e al. 2007; DiMilla e al. 1991; O e and Pe el on 1985; Polla d and Bo i 2003; Vallo on e al. 2005; Waka, i ki e al. 2003; Xiong e al. 2010). Simila o he p e io_i, ec ion, i c h chemo-mechanical co_i pling can be ma hema icall, add e, ed b, con ide ing he chemical ef_i ilib i_i m of he c, o kele on a he cell edge and ho i j affec ed

Fig. 4 A $c_{\mathbf{v}}$ cle of ac in polyme i a ion benea h he cell memb ane: a G-ac in monome, in e, be een

The o al change of f ee ene g d_i ing an en i e pol me i a ion c cle can hen be e ima ed b adding con ib_i ion, f om, ep 1 and 2. Thi ield :

$$\mu = (2).$$
 (34)

2. .2 🏋

1

We a e no in a poi ion o i e he chemical po en ial of ac in monome, in hei agg ega ed form $acco_t n$ ing for he effect of membrane and in eg in force, a follo, (Hill 1981):

$$\mu = \mu_0 + \mu = \mu_0 + (2)$$
(35)

No e ha he change in f ee ene g, f om he p e ence of ph, ical fo ce, a added o he o iginal chemical po en ial μ_0 , ince μ i in e p e ed a an ene g, con, t med b he ac in c, o kele on d_L ing a pol, me i a ion, ep. When he, em i a equilibit i_L m, he chemical po en ial of G-ac in and ac in Alamen, (agg ega ed ac in) a e equil al $(\mu = \mu)$ and e ob ain:

$$\mu_0 + (2) = \mu_0 + \hbar () \text{ i h} = --$$
 (36)

Here, $e_{i_{\ell}}$ ed he fac ha he ol_{ℓ} me f ac ion of ac in monome a $e_{i_{\ell}}$ ilib i_{ℓ} m j $e_{i_{\ell}}$ al o / $b_{i_{\ell}}$ e ing = 0 in (31 While he coefficien i gene all a f_t nc ion of he magni i de of pa icipa ing fo ce (ee di $c_{t,r}$ ion in Hill 1981), e con ide i he ea a con an (= 1/2) fo, implici In o he o d, e a, i me ha ph, ical fo ce affec he, on-and, off- a e efft all. U ing (39) and (31), i i hen po, ible o ob ain he eloci of cell, p eading (o he a e of ac in flamen g o h belo he memb ane) a :

$$= {}^{0} () e p \left(\begin{array}{c} (2) \\ \hline \end{array} \right)$$
(41)

he e j he fo ce dependen concen_ a ion of G-ac in a ef_l ilib i_l m de ned in (38). The above ef_l a ion cap $_L e$ many fea $_L e$ of cell, p eading. In pa ic $_l$ la, one, ee ha in (41) ha he membrane e j ing fo ce end o dec ea e he a e of g o h hile he p_l lling fo ce inc ea e j i. Since he in eg in p_l lling fo ce j di ec l ela ed o cell con_ ac ion, (41) cap $_L e$ he co $_l$ pling be een cell con_ ac ion and p eading: he more con_ ac ion, he fa e he, p eading. F $_L$ he more, he ef $_l$ a ion

Fig. 5 Relation, hip be een he memb ane $p \circ_{c} t_{c}$, ion fo ce and and in eg in fo ce and memb ane en ion

p_t lling fo ce may be ho_t gh of a he e t l ing fo ce of di bt ed in eg in a cion on a po ion of he cell edge ho e leng h i he a e aged di ance be een o ad ancing ac in Flamen, . Thi leng h can hen be calc_t la ed f om he ac in ol_t me f ac ion a he cell edge b = 4 / (Fig. 5). Thi lead o he e ima ion of he p_t lling fo ce a :

$$=\frac{1}{2} \qquad =\frac{2}{---} \tag{44}$$

he e i he in eg in fo ce a he cell pe ime e and he p od, c i he effec i e a ea on hich he in eg in ac ion help, he pol me i a ion of a ingle. Alamen . No e ha (43) and (44) p o ide a clea ela ion, hip be een he mechanic, of in eg in, he memb ane, e, and he a e of cell g o h in (41). he cell memb ane į gi en in e m of he in eg in f ac ion, and and nall, he defo ma ion of he, $_{i}$ b, a e į en i el, kno n ia he kno ledge of i, adial dį placemen, The abo e eigh a iable, ma be de e mined h o_i gh he follo ing eigh ef_i a ion de i ed in he p e io_i, ec ion:

Chemical equilibrium

$$S_{e} e_{\mu} he_{\mu} = \mu^{F} in$$
 (45)

Ac in Plamen,
$$\mu = \mu$$
 on (46)

Cell memb ane
$$\mu = \mu$$
 in (47)

Mass conservation

$$C_{\mathbf{v}} \circ \text{ol} \qquad \cdot + \qquad \left(-\frac{\nu}{\nu} + \frac{\nu}{\nu}\right) + \qquad \cdot + \left(--+-\right) = 0 \qquad (48)$$

Mi
$$_{\iota}$$
 e $\left(-\frac{\nu}{2}+\frac{\nu}{2}\right)+$ $\left(-\frac{\nu}{2}+\frac{\nu}{2}\right)+$ $\left(-\frac{\nu}{2}+\frac{\nu}{2}\right)=0$ (49)

In eg in,
$$(+) + (+) (-+) + (-+) = 0$$
 (50)

Mechanical equilibrium

Cell
$$\xrightarrow{F} + \underline{1}(F) \xrightarrow{F} F + \underline{1}(F) \xrightarrow{F} F = 0$$
 (51)

$$\mathbf{S}_{\iota} \mathbf{b}_{\iota} \mathbf{a} \mathbf{e} \qquad \frac{\mathbf{b}_{\iota}}{\mathbf{b}_{\iota}} + \frac{\mathbf{b}_{\iota}}{\mathbf{b}_{\iota}} + \mathbf{b}_{\iota} = 0 \tag{52}$$

The e \mathbf{e}_{i_l} a ion, a e complemen ed b, he \mathbf{e}_i e bo_i nda, condi ion, (co, e, ponding o he abo e \mathbf{e}_i e diffe en ial \mathbf{e}_{i_l} a ion,) and ini ial condi ion, , pecif, ing he, a e of he cell a he beginning of he, im_i la ion, . The e condi ion, a e, i ch ha he cell and , i b, a e a e ini iall, i ndefo med and i np e, i i ed:

$$(, 0) = 0 \quad (, 0) = 0 \quad (, 0) = 0 \tag{53}$$

In addi ion, i i, $a_{t,t}$ med ha he compo i ion of he cell con i, of 25 % ol_t me f ac ion of elemen, comp i ing he pa, i e c, o kele on, 5 % ol_t me f ac ion of ac in monome, and no ini ial, e, be, (effence for he ent mbe, a e gi en in Table 1).

$$(, 0) = 0.25$$
 $(, 0) = 0.05$ $^{F}(, 0) = 0$ (54)

and all in eg in, a e o iginall, in hei lo af ni , a e (ee Table 1 fo efe ence):

$$(,0) = 5^{15}$$
 $(,0) = 0$ (55)

Conce ning he bo_i nda condi ion, e a, $_i$ me ha he e a e no $_i$ e of c o ol and ac in monome, ac o, he cell memb ane and no lo af ni in eg in a e allo ed o en e he, em. In oking Eq. (11) and (26), e can h_i, i e:

🖻 ringer

Table 1 Pa ame e_{ℓ} , ℓ_{ℓ} ed in he, im_{ℓ} la ion,

De ni ion

S mbol $Val_{t} e$

Uni

Refe ence

 $C_{\mathbf{v}}$ of \mathbf{v} ol \mathbf{v} ol \mathbf{t} me f ac ion

Fig. 6 Ill_t, a ion of he le el, e f_t nc ion de c ibing he cell bo_t nda and he deg eq of f eedom a, ocia ed i h node in he comp_t a ional domain

he e he f_{i} an i f_{i} a de hed a he en ile, e, in he memb ane. Finall, he abore, em of ef_{i} a ion i cor pled i h he g o h ef_{i} a ion (41) in o de o de e mine he mo ion of he cell bor nda in ime. The n_{i} me ical approach o, or e (48 52) i di c_i, ed belo .

3.1 Cell-, $i b_{i}$ a e ef *i* ilib *i* m

In o de e mine he, pa ial and ime e ol_i ion of he a io_i, con in_i m led, he ph, ical domain, (ep e en ing cell and, i b, a e) m_i, be di c e i ed in a lini e n_i mbe of elemen, and node. A po en ial j, i e i h he p e en p oblem j ha cell

Fig. 7 a

He e = 1, 2, 3 deno e, he local node n_i mbe fo each elemen and he e m, $\bar{\mathbf{u}}$ and $\bar{\bar{\mathbf{u}}}$ co, e pond o, ong and eak deg ee, of f eedom ha ani h fo non-en iched elemen, S_i b, i i ing he. Ani e in e pola ion (58) in he eak form and linea i ing he efficiency, one can, ho ha he p oblem, ed_i ce, o, ol ing he follo ing algebraic i e a i e p oblem:

$$\mathbf{C}\mathbf{U} + \mathbf{K} \ \mathbf{U} + \mathbf{F} = \mathbf{0} \tag{63}$$

he e U deno e, he e c o con aining global deg ee, of f eedom, hile C, K and F a e he damping ma i , iffne, ma i and fo ce e co, e pec i el (ee Appendi A.2 fo a mo e de ailed e plana ion). Eq. a ion (63) i, ol ed a each ime, ep ι , ing a Ne on-Raph on p oced e and a back a d E le in eg a ion me hod i ι , ed o compt e he t nkno n feld a each ime, ep a follo, :

$$\mathbf{U} = \dot{\mathbf{U}} \cdot \tag{64}$$

he e deno e he ime inç emen . Upon ob aining a, ol_i ion a ime inç emen , he me hod con j , of comp_i ing he a e $\dot{\mathbf{U}}$ a he ne ime, ep +

$$\dot{\mathbf{U}}(+) = \dot{\mathbf{U}}^{-1}(+) + \dot{\mathbf{U}}$$
 (65)

he e he $al_i e \dot{U}$; comp_i ed fo each i e a ion b i_i i b, i i ing E i_i . (64) and (65) in o E i_i . (63). This lead o he follo ing $e i_i$ a ion:

$$\left(\mathbf{C}_{+}^{1} + \mathbf{K}_{+}^{1}\right) \cdot \dot{\mathbf{U}} = \left(\mathbf{F}_{+}^{1} + \mathbf{C}_{+}^{1} \cdot \dot{\mathbf{U}}_{+}^{1}\right).$$
(66)

I e a ion, a e hen epea ed i n il he no m of he ec o U i, malle han a mall ole ance.

3.2 Cell g o h and le el, e e ol_i ion

To model cell g o h, e, l, f om he ef_{l} ilib i_t m ef_{l} a ion, a each ime, ep can be i, ed o e, ima e he p_t lling and memb ane e, i ance fo ce appea ing in (41). Since he cell_adi_t, i defined in e m, of he le el, e f_t nc ion i, j a e of change in ime can, imple be e p, e, ed in e m, of he _ adi ional le el, e e_t ol_t ion ef_{l} a ion (D_t dd_t e al. 2008):

$$- = - + - = 0 \tag{67}$$

he e i cell bo_i nda cell comp_i eloci comp_i ed in (41). De ning he le el e a a igndi ance f_i nc ion (i.e. -=1), e can nd he e p e, ion of he le el e f_i nc ion a ime, ep + a:

$$^{+} = + \cdot .$$
 (68)

G o h picall in ol e he c ea ion of ne ma e ial poin, ho e compo i ion j t nkno n, a he cell bot nda I j ht, nece, a o make, ome a, t mp ion ega ding he, a e of he mi t e a he ne cell edge in e m of he con i t en', olt me f ac ion. To en t e he con int i of bo h a con int t m. eld and i, de i a i e dt ing cell g o h, a ealj ic a, t mp ion (A e hian 2007) con j, of app o ima ing a seld

Fig. 8 Rela ion hip be een cell con_ac ion and cell a ea fo diffe en, $t b_{-} a e_{-}$ iffne, . The model p edic, a nonlinea ela ion hip be een con_ac ion and, $t b_{-} a e_{-}$ iffne, in ag eemen i h e pe imen, on mic opilla, (Ghibat do e al. 2008). Fo compa j on $p_{t-} p_{0} e_{-}$, he, im $_{t}$ la ed fo ce in he o dina e j eft al o he o al compt ed in eg in fo ce di ided be he n_{t} mbe of pilla, f om e pe imen al image and mt liplied be he a io of cell a ea ob ained f om e pe imen, and, imt la ion. The e olt ion of adial , e, in he, $t b_{-} a e_{-}$ olt me f ac ion F of $r_{-} e_{-}$, tbe, in he adial dj ec ion and he concent a ion of high aft ni e gin a e al o, ho n fo diffe en, $t b_{-} a e_{-}$ iffne,

Fig. 9 E ol_l ion of p_l lling fo ce, memb ane e j ance fo ce and cell a ea in ime

C Cell adhe ion i p o ided b he cl_i, e ing of in eg in ligand comple e i ling f om he chemical ef_i ilib i_i m de c ibed in Sec . 2.2. Cell con_ac ion_igge, a adial, epa a ion be een i, memb ane and he i nde l ing, i b a e, i ch ha he epa a ion_eache, a ma imi m a he cell', pe iphe . When ligand, a e p e en, he in eg in j e i ing hi, epa a ion a e, i bjec ed o la ge, j e ching fo ce in hi j egion, hich lead o hei, abili a ion [acco ding o (22)]. Thi e plain, he acci mi la ion

Fig. 10 Change of cell a ea and high-at i in eg in concer, a ion a , ead a e fo diffe en , i b , a e , iffne, , and compa j on i h e pe imen al e_i 1, of Solon e al. (2007)

he e he, p eading a e, p_t lling fo ce and memb ane e j ing fo ce a e depic ed a a f_t nc ion of ime. I j, een ha he, p eading a e j a f_t nc ion of he diffe ence be een and , t ch ha hen ______anj he (he o c_t __e mee), he eloci _____of p eading become f_t a i-negligible. Ano he effec of he p_t lling fo ce j o inc ea e he___a e of, p eading b_____ai ing he ac j a ion ene g ... The model he efo e p edic, a j e in bo h cell a ea and, p eading _____a e ____i h con__ac ion and, t b _____a e, iffne, a , ho n b _____he fac ha he cell a ea become la ge a one mo e o he______i gin in Fig. 8.

The model pa ic_t la l_p edic, ha he h ee abo e mechani m a e, ongl in e ela ed and dependen on, t b, a e, iffne, and ligand den i. We ne a, e, he ot ndne, of he model b, compa ing n_t me ical p edic ion, and e pe imen al meat emen, f om he li e a t e.

4.2 Effec of, i b, a e, iffne, on cell a ea

E pe imen al, *i* die on *k* b obla, ha e, ho n ha cell a ea (Solon e al. 2007) inc ea e, i h, *i* b, a e, iffne, in a nonlinea fa hion (Fig. 10). He e, e in e iga e hi dependence b, con ide ing an ela ic, *i* b, a e ho e ligand concent a ion i in mi el la ge ($\rightarrow \infty$) o en *i* e ha cell, p eading i only affected b, iffne,. To in e iga e cell, p eading, e, a f om an o iginal cell con *k i* a ion of, *i* face a ea $A_0 \approx 600\mu^{-2}$ in hich no, *e*, *k* be, and high af ni in eg in a e p e en. Since hi, em i o iginall, o_i of ef_i ilib *i* m, e ob e e a ime dependent, *e*, *k* be formation, in eg in ligand adhe ion and cell, p eading ha e en *i* all, eache a

Fig. 11 a Change of cell a ea and $, , e_{i}$, the $, old me f ac ion d_{i}$ ing g o h fo differen $, i b_{i}$ a e $, iffne_{i}$, and **b** e pe imen al $e_{i} l_{i}$ of Ye_i ng e al. (2005)

a limi, hich depend on o mechani, m ha ac again, ac in pol, me i a ion. Fi, , , , e, , be, e, en, all, each a ma im, m concentration, hich limit, he contraction a cell can e e on i, , , or nding and h, he p, lling force. Second, according o (41), he a e of, p eading i controlled by he competition be e4b3180 e 53.406082p, lling and he e i ing force. A objected in Fig. 9, he e i ing force, hile o iginally eak, increase a a m_t ch fa e ta e han he p, lling force and e en t all, become he domina ing fac o; hi p_t, an end o cell, p eading.

Fig. 12 Change of cell a ea a, ead, a e fo diffe en ligand concentration, and compa j on i h e perimental $e_{i,1}$ of Reinha -King e al. (2005)

ha cell a ea a a linea f_i nc ion of ligand den i $rac{1}{6}$ i hin concen_ a ion, ha_ anged he he p opo ed model $co_t ld_z$ ep $od_t ce hi$ f om 0.001 o 1 mg/ml. To kno end, e con ide ed a cell l_{1} ing on $a_{1,1}b_{2,2}$ a e of $g_{1,2}e_{1,2}$ iffne, and a ied he ligand concen_ a ion f om 0.001 o 1,000 ligand/ μ m². A depic ed in Fig. 12, he model p edic, a nonlinea _ ela ion, hip be een ligand den i a and cell a ea. While hi _ e , l ma, eem con_adic o, i h e pe imen al end, he e a e, e e al e plana ion, fo he ob e ed di c epance. Fi, , i , ho_t ld be no ed ha he ange of ligand concen-a ion con, ide ed in he, im_t la ion j m_t ch g ea e han ha in e iga ed e pe imen all, In fac, if one compa e _ end i hin he, ame concen_ a ion_ ange, he p edic ed inç ea e in cell a ea i _e clo e o he linea _ ela ion hip, een in e pe imen, . F_i, he mo e, o_i, ide of hi, ange, model p edic ion, a e pe fec l_{i} , o_i nd a i į kno n ha cell a ea canno con in $_i$ o $_i$, l_i inc ea e and m_i , j_i each a ma im $_i$ m, ega dle, of he concen a ion of ligand. Simila le hen no ligand a e p e en, cell a ea m_i, con e ge o a, mall b_i . Ani e al_i e. Thi j_i , i e, he fac ha cell a ea ha, ho i on al a mp o e, a ligand den i end o e o and in ni Finall, he inc ea e of cell a ea i h ligand concen, a ion can be e plained on he ba i of (22). On he one hand, hen ligand den i , anj he, in eg in, canno a ach o he , $i b_i$ a e; hi p ecli de he e i ence of a p_i lling fo ce and he a, ocia ed inc ea e in cell a ea. On he o he hand, hen ligand den i si high, cell can a ach o he , i b, a e and gene a e con ac ion; hi p od i ce e e a, alan, an, o c, a

ligand a achmen on he pla ma memb ane j p omo ed b la ge in eg in p_i lling fo ce and end o einfo ce bo h con ac ion and adhe ion on, iff, $\iota b = a e$. Finall, he phenomenon of p o ι , ion g o h j he e ι l of an in e pla be een o oppo i e fo ce : he in eg in p_i lling fo ce a he edge of he cell and he e ching and bending e j ance of he cell memb ane. The e mechani m ha e been p e en ed i hin a he mod namicall con j en f ame o k ha obe f_i ndamen al p inciple, ι ch a and enfo cing he fac ha $rac{h}_{y}$ = , e ob ain he follo ing e p e, ion fo y:

$$y_{1} = \frac{1}{1} - \frac{1}{E}(1 +)(1 - 2) - (- + -)$$
 (71)

he e \mathcal{E} and a e he Yo_i ng' mod_i l_i, and Po_i, on' a io of he ac in Alamen ne o k. Thei ela ion hip i h Lame' con an appea ing in (70) i gi en belo :

$$\mathcal{E} = \frac{\mu'(3 + 2\mu')}{+\mu'}; \text{ and } = \frac{1}{2(1+\mu')}$$
 (72)

We no i h o e p e, he di e gence $\cdot \mathbf{v}$ of he eloci pelot \mathbf{v} fo, i b, i i ion in he effication of ma, balance (4 6). Fo a h ee dimen ional p oblem, he di e gence ead $\cdot \mathbf{v} = \cdot + \cdot + i\mathbf{y}$ he e a, i pe impo ed do i i, ed o deno e a ime de i a i e. U ing he fac ha:

$$\dot{y}_{!} = \frac{1}{1} \left[\frac{1}{E} (1 + 1)(1 + 2) + (1 + 1) \right]$$
 (73)

f om (71), e can_e_i e:

- Ci_elekogl₄-Schole, G, Wa, ne Q_A, No. akd I, Mei, e a JJ, Sch a e MA, Mogilne A (2005) Model of co, pled an ien change of ac, ho, adhe ion and e, be, alignmen in endo helial cell
- e ponding o, hea, e, J Theo Biol 48:569 585 Co, a KD, Lee EJ, Holme, JW (2003) C ea ing alignemen and ani o, op, and enginee ing hea i, t e: ole of bot nda condi ion in a model h ee-dimen ional ct 1 t e, em. Tj, t e Eng 9(4):567 577 C ame LP (1997) Molect la mechani m of ac in-dependent e, og ade o in lamellipodia of mo ile cell.
- F on Bio ci 2:d26 270
- C ame LP, Mi chi on TJ, The io JA (1994) Ac in-dependen mo ile fo ce and cell mo ili S CL. Opin Cell Biol 6:82 86
- Damien C, The M, Ch_l Y-S, D_l fo_l S, Thie J-P, Bo nen M, Na, o P, Mahade an L (2007) The $_{l}$ ni e, al d namic of cell, p eading. C_l Biol 17:694–699 Damien C, 2.2(LP)-191.686.4(M k ich250-34.8(M)28.6(a285.20ich2506-352.130)-9.3(1A pl)-2506-R.)] mMdel

- Sheme, h T, Geige, B, Be, had, k, A, Ko, lo, MM (2005) Focal adhe ion, a mechano, en o, : a physical mechani, m. P oc Na I Acad Sci 102:12383 12388
- Solon J, Le en al I, Seng_l p a K, Geo ge PC, Janme, PA (2007) Fib oblą adap a ion and, iffnę, ma ching o, of ela ic, lb a e Bioph, J 93(12):4453 4461 S ameno ic D, La opol lo KA, Pl en į A, S_l ki BE (2009) Mechanical, abili de e minę , cę, Jbe
- and focal adhe ion o ien a ion. Cell Mol Bioeng 2(4):475 485
- Tan JL, Tien J, Pi one DM, G a, DS, Bhad i aj, K, Chen CS (2003) Cell 1 ing on a bed of mic oneedle : an app oach o i ola e mechanical fo ce. P oc Na l Acad Sci 100(4):1484–1489
- T, t da Y, Ya t ake H, J hijima A, Yanagida T (1996) To, ional igidi of, ingle ac in Plamen, and ac in ac in bond b eaking fo ce t nde o, ion meat e dd ec l b in i o mic omanipt la ion. P oc Na l Acad Sci 93:12937 12942
- Vallo on P, Dan_t, e G, Bohne S, Mei e J-J, Ve kho, k AB (2005) T acking e og ade o in ke a o-c e : ne , f om he f on . Mol Biol Cell 16:1223 1231