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Abstract

We introduce an adaptive concurrent multiscale methodology (ACM2) to handle situations in which both macroscopic
and microscopic deformation fields strongly interact near the tip of a crack. The method is based on the balance between
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Fracture resistance is also particularly desirable for next generation of synthetic materials. However, unlike
biological materials, they do not benefit from the efficient, but lengthy evolution process to optimize their
properties. The development of man-made materials must therefore rely on the use of rational design and
mathematical modeling to accurately describe material failure and subsequently predict microstructures that
can resist failure the most. So far, research efforts have been hindered by the fact that fracture mechanics in
heterogeneous media typically involve two distinct and separate length-scales. On the one hand, the growth of
a ductile crack occurs via the evolution of damage ahead of the crack tip, in a relatively small region, known as
the process zone [61,2]. In this region, materials usually exhibit a complex behavior involving inelasticity, dam-
age and eventually a strain-softening response that may induce size effects [2,33]. A micromechanical modeling
approach [37]



microstructural descriptions to coexist within a single simulation and therefore ensures a low computational



A consequence of this operation is that the computational domain is split into two subdomains, namely, the



[12]



2.3. Macro–micro coupling

Let us now discuss the conditions to be enforced at the boundary between macroscopic and microscopic
domains. In [20]



cBT ¼ ½uT ðnÞ � u



ð�L̂=10; �L̂=10Þ with respect to the center of the domain (Fig. 3(a)). The matrix material is modeled as a Saint
Venant–Kirchhoff model that relates the microscopic (second Piola–Kirchhoff) stress ~S to the microscopic
Green–Lagrange strain ~E via elastic constants ~k and ~l as:
~S ¼ ~k � trð~EÞ1 þ 2~l~E; and ~E ¼ 1

2
ðr~u þ ðr~uÞT þ ðr~uÞT � r~uÞ ð9Þ
We note that this model is merely an extension of a linear, isotropic elastic material to the range of large defor-
mations. At the macroscale, we then assume that the material retains the characteristics of a Saint Venant–
Kirchhoff material and compute the associated elastic constants �k and �l via a first order computational
homogenization procedure prior to the multiscale analysis (Fig. 3) [59] We note that these constants are deter-
mined once and are used at the entire macroscopic domain.
3.1. Numerical problem

Numerically, the multiscale method relies on a nonlinear algorithm with two-level nested iterations
(Fig. 3(b)). On the one hand, the “inner” level of iterations seeks to determine the nonlinear elastic solution
of the two-scale problem. On the other hand, the “outer” level analyses the converged elastic solution, com-
putes the two types of error defined in Section 2.2 for macroscopic elements and refines the description accord-
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in which �X0 and ~X0 are respectively the macroscopic and microscopic element domains in the reference con-
figuration, while �C0 and ~C0 denote element edges that belong to the domain boundary C. In addition, the
matrix N contains the finite element shape functions and B0





whose associated unit cell is depicted in Fig. 3(a). To further illustrate the flexibility of the method, we consider



in computation cost with ACM2 increases drastically as the scale separation l=L̂, between the macroscopic
problem and the microstructure becomes more pronounced. These large computational gains are possible
thanks to the reduced number of embedded unit cells necessary to obtain an accurate solution, a feature that
is partly due to the applications of quasi-periodic boundary coupling. Indeed, the existence of displacement
fluctuations on the macro–micro boundary (Fig. 7(b)) largely contributes to the accuracy of the microscale
solution, even for small microscopic domains.
3.3.2. Inclined crack

To explore the behavior of the method when a crack is not in line with the mesh, let us now consider an

edge crack with an inclination h (h ¼ 51
�

degrees here) in a rectangular domain of size 512L̂ � 896L̂ as shown
in Fig. 8. Mixed mode loading conditions are then provided by constraining the motion of the bottom bound-

ary in both vertical and horizontal directions and applying a positive vertical displacement dy ¼ 0:64L̂ to the
top boundary. Fig. 6(b) depicts the contours of von-Mises stresses in both domains in the vicinity of crack tip

region and depicts the change in accuracy with changes in error tolerance emax
d

� �i
. Once again, we clearly see an

optimal value of the error, which is estimated to be 0.004. This value is fairly consistent with that derived in the
previous example, which confirms the flexibility of the method, regardless of crack orientation.
3.4. Evolution of the refined region during incremental loading: case of double edge cracks

This section discusses the adaptivity of the refined microscopic region when a domain is subjected to incre-
mental loading. In this part we assume that the material remains in elastic regime after deformation. While not
necessary in the case of elasticity, incremental loading becomes a requirement when the material response
becomes history-dependent such as during plasticity and damage evolution. The problem of interest here con-
sists of a rectangular domain of size 128L̂ � 224L̂ containing two parallel horizontal edge cracks that are offset
by a small distance 2h, as depicted in Fig. 9(a). The plate is then subjected to an incremental tensile vertical
displacement and a fixed horizontal displacement on top and bottom boundaries. Increasing the macroscopic







r ¼ Eð1 � DÞe ð20Þ



lattice elements are respectively represented by vectors ui and Di. Starting from this state, an incremental
boundary condition D�u is applied and a solution is sought in the form uiþ1 and Diþ1. To determine this solu-
tion, an iterative scheme is performed in two steps. (a) predictor step:
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