
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 283 (2015) 280–302
www.elsevier.com/locate/cma

A coupled Eulerian–Lagrangian extended �nite element formulation
for simulating large deformations in hyperelastic media with moving

free boundaries

Louis Foucarda, Anup Aryalb, Ravindra Duddub,� , Franck Vernereya,��

aDepartment of Civil, Environmental and Architectural Engineering, Program of Mechanical Science and Engineering, University of Colorado,
Boulder, United States

b Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, United States

Received 1 May 2014; received in revised form 10 September 2014; accepted 14 September 2014
Available online 2 October 2014

Abstract

We present a coupled Eulerian–Lagrangian (CEL) formulation aimed at modeling the moving interface of hyperelastic materials
undergoing large to extreme deformations. This formulation is based on an Eulerian description of kinematics of deformable bodies
together with an updated Lagrangian formulation for the transport of the deformation gradient tensor. The extended �nite element
method (XFEM) is used to discretize the mechanical equilibrium and deformation gradient transport equations in a two-phase
domain. A mixed interpolation scheme (biquadratic for the velocity and bilinear for the deformation gradient) is adopted to improve
the accuracy of the numerical formulation. The interface describing the deformed shape of the body is represented by the level set
function and is evolved using the grid based particle method. The performance of the scheme is explored in two-dimensions in the
compressible regime. For an adequate spatial and temporal discretization, our numerical results are in good agreement with theory
and with numerical results from the traditional Lagrangian formulation (in Abaqus). The advantage of the proposed formulation is
that material motion is not coupled with that of the mesh; this eliminates the issues of mesh distortion and the need for remeshing
associated with Lagrangian formulations when bodies undergo very large distortions. It is therefore well adapted to describe the
motion of complex �uids and soft matter whose physical properties are intermediate between conventional liquids and solids.
c
 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Many important and challenging problems in the areas of geophysics (e.g. ice sheet �ow, mantle dynamics), soft
materials (e.g. deformation of hydrogels and biological cells) and material science (e.g. metal forming) involve large
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deformations or �ow of solid material. In these conditions, it can be convenient to work with a fully Eulerian
description of solid deformation, especially when the boundaries of the solid domain are not moving [1,2]. For
problems where domain boundaries are free to move, however, a Lagrangian (material) description is required to map
solid deformation between reference and current con�gurations. Such a moving boundary problem also needs the
introduction of specialized numerical methods that can track an interface without remediating to expensive remeshing
techniques. In this context, we propose to address the challenges with describing the evolution of free boundaries
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equation in an Eulerian framework, and is then used to update the isochoric and volumetric parts of the deformation
gradient, separately, using an updated Lagrangian description. The position of the material interface is tracked using
the GPM [3] and the velocity �eld projected in the direction normal to the interface. We show that the method is
accurate in the regime of �nite deformation and viable for investigating soft matter mechanics. The organization
of the paper is as follows: Section 2 introduces the kinematics, the governing and constitutive equations, and the
resulting weak form for the mechanical equilibrium of an elastic body. In Section 3, we present a numerical strategy
to discretize the weak form, the tracking of the interface and the Lagrangian transport of the deformation gradient
tensor components. Finally, the numerical convergence and accuracy of the method are demonstrated in Section 4
through the examples of a uniaxial extension of a rectangular bar, and the simple shear of a rectangular block. The
mesh-independent geometric discretization and the absence of mesh distortion problem is then demonstrated with
the test of a cylinder under compression and the indentation of a rectangular block. The latter results are validated
by comparing them with those from traditional Lagrangian formulation in the commercial software Abaqus. Some
concluding remarks are made in Section 5.

2. Formulation of the governing equations

2.1. Kinematics

In this study we consider a domain
 containing an elastic body in the region
 s. t / . The domain
 is delimited
by a boundary@
 while the interface describing the current shape of the elastic body is denoted by� . t / . Thus,�
splits the domain
 into the solid domain
 s. t / and its complement denoted by
 n 
 s. t / . We employ the Eulerian
description of the motion and choose a �xed right-handed Cartesian system of coordinatesfx D x j Oej ; j D 1; 2; 3g,
where Oej are the orthonormal basis vectors [33]. The motion of a physical particle P is expressed by the mapping
function x D � .X; t/ between its reference coordinatesfX D X j Oej ; j D 1; 2; 3gat an initial timet

/
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where Ob D OF OFT D J � 2=3FFT . The speci�c functional forms ofU and OW are to be chosen to satisfy physical
conditions. Herein, we assume the functions proposed by Simo et al. [34,35] as,

U. J/ D
�
2

[ ln. J/ ]2 ;

OW. Ob/ D
�
2

h
tr. Ob/ � 3

i
;

(14)

where� and� represent the shear and bulk modulus of the material, respectively, and `tr' denotes the trace of the
tensor andOb D OF OFT . The expression for the Cauchy stress is [2],

� . J; OF/ D
1
J

h
� ln. J/ I C � dev. Ob/

i
(15)

where dev. Ob/ D Ob � 1
3tr. Ob/I is deviatoric part.
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Fig. 2. Illustration of the Eulerian �nite element mesh and the location of degrees of freedom on the mixed enriched �nite element containing a
segment of the interface. Circles. � / show the location of bilinear element nodes and crosses (� ) show the location of biquadratic element nodes.
The interface (green line) cutting through the element is represented implicitly using the level set function� . (For interpretation of the references
to color in this �gure legend, the reader is referred to the web version of this article.)

and the Heaviside functionH is de�ned as,

H.�. x; t // D
�

1 � > 0;
0 � < 0:

(25)

Note that the level set function� is continuous across the interface and so that it can be interpolated using the shape
functionsN I and ON I .

Remark 5. Previously, Duddu et al. [2] proposed the above mixed formulation to ensure stability in the case of nearly
incompressible elastic solids (e.g. rubber with Poisson's ratio� D 0:48 � 0:5). However, even for a compressible
solid, the mixed formulation seems to yield better numerical accuracy and requires less number of iterations to reach
the tolerance limit for the residual.

In this study, we reduce the dimension of the domain by considering that it is uniform in thex3 direction (plane
strain conditions apply). This implies thatv3.x; t / D 0; F33.x; t / D 1; F13.x; t / D F32.x; t / D 0; this allows us to not







L. Foucard et al. / Comput. Methods Appl. Mech. Engrg. 283 (2015) 280–302 289

ytCdt D yt C v? .ytCdt=2; t /dt C � � v? .ytCdt=2; t /
dt2

2
; (36)

where� is the matrix of the angular velocity of the interface normal. Introducing the local coordinates� 1 and� 2 that
respectively run in the directions tangent and normal to the interface at pointyt , the angular velocity can be written
as,

! D �
�
v? � n

�

;� 1
z and 
 ik D � i jk ! j (37)

with the permutation tensor� i jk D 1
2. i � j /. j � k/. k � i / , indicesi ; j ; k D f 1; 2; 3g
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Finally, a new level-set function�. p; t C dt/ can be calculated as the signed distance function to� at nodesp as
follows [3]:

� . p; t C dt/ D � sgn
�

ytCdt � p
jytCdt � pj

� Nnt
0

�
jytCdt � pj; (44)

whereytCdt is the particle associated withp at timet C dt and the “sgn” is the signum function. The reconstruction of
the level set function using the local polynomial approximation of the interface is computationally inexpensive, and
is used in the XFEM part of the algorithm. Let us summarize the GPM scheme in a pseudo algorithm as follows:

1. Given the initial level set function� , �nd the coordinates of the particles that correspond to the nodes inside the
computational tube (initialization step).

2. Given the velocity �eldvt , update the position of the particleyt to its current positionytCdt.
3. For each particley0, �nd the neighboring particles to construct a local polynomial interpolationr .� 1; t C dt/ of the

surface� aroundy0.
4. Givenr .� 1; t C dt/ , �nd the new particles by projecting the nodes inside the computational tube on the surface� .
5. Compute the new geometrical quantities such as the normalt.
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�
wF ; . OFtCdt � QF/

�


 �
D 0; (50)

and the corresponding discretized forms are given by,

Kenr
J

NJenr
g D Renr

J ; (51)

Kenr
F

NFenr
g D Renr

F ; (52)

whereNJenr
g and NFenr

g are the unknown global vectors of all enriched degrees of freedom; the global tangent matrices
are given by,

Kenr
J D

X

e

Z


 e

�
Nenr

J
� T Nenr

J d
 e; (53)

Kenr
F D

X

e

Z


 e

�
Nenr

F
� T Nenr

F d
 eI (54)

and the residuals matrices are given by,

Renr
J D

X

e

Z


 e

�
Nenr

J
� T

�
QJ � Nreg

J
NJreg

�
d
 e; (55)

Renr
F D

X

e

Z


 e

�
Nenr

F
� T

�
QF � Nreg

F
NFreg

�
d
 e
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Fig. 4. Schematic diagram of the uniaxial extension of a soft rectangular bar. A traction ofNt D � 2 MPa is applied to the end of the bar to deform
it elastically.

(a) Initial velocity variation in the domain. (b) Velocity variation with depth after every 25 iterations.
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1. Bilinear: 4-node FE interpolation ofv; OF & J
2. Biquadratic: 9-node FE interpolation ofv; OF & J
3. Mixed: 9-node FE interpolation ofv and 4-node FE interpolation ofOF & J.

In the case of uniaxial extension inx2, we haveJ D F22 > 1, sinceF11 D F33 D 1 and all other components
of F vanish. Therefore, it is suf�cient to only observe the behavior ofF22 from t D 0 until equilibrium. In the
following �gures, we plot the variation ofF22 in the x2 direction every 50 iterations. Note that the length of the
solid increases and the change inF22 decreases with each iteration as we approach equilibrium. We can see from
Fig. 6 that for� D 0 the bilinear and mixed interpolation strategies work equally well, whereas the biquadratic
interpolation strategy suffers from spurious oscillations close to the traction boundary. From Fig. 6 we can observe that
for � D 0:25 both the bilinear and biquadratic interpolation strategies suffer from spurious oscillations, whereas the
mixed interpolation strategy is least affected. This numerical example indicates that the mixed interpolation strategy
leads to better accuracy and stability compared to the uniform interpolation strategies. However, the mathematics
behind the superior performance of this mixed interpolation strategy for Eulerian solid mechanics in the compressible
regime has not yet been fully investigated and will be the focus of a future study.

We next investigate the accuracy of the scheme by comparing the analytical and numerical equilibrium stress
versus deformation curves. Using the constitutive law given in Eq. (15), we can derive the analytical expression for
the Cauchy stress component� 22 as,

� 22 D
1

F22

�
� log. F22/ C

2
3

� F � 2=3
22 . F2

22 � 1/
�

: (58)
� F � 21

D
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(a) Bilinearv; OF andJ; � D 0. (b) Bilinearv; OF andJ; � D 0:25.

(c) Biquadraticv; OF andJ; � D 0. (d) Biquadraticv; OF andJ; � D 0:25.

(e) Biquadraticv, bilinear OF andJ; � D 0. (f) Biquadraticv, bilinear OF andJ; � D 0:25.

Fig. 6. Performance of the mixed element formulation for uniaxial tension test. Variation ofF22 along the length of domain is shown for bilinear,
biquadratic and mixed formulation for two compressible materials with Poisson's ratio� D 0 (left column) and� D 0:25 (right column).

right to left as shown in Fig. 8(a), so the velocity is negative. In the case of simple shear �ow inx1 direction, we have
F12 > 0; F22 D F11 D F33 D 1 and all other components ofF are zero. Therefore, it is suf�cient to only observe the
behavior ofF12 from t D 0 until equilibrium. We next plot the match between the analytical and numerical curves for
equilibrium stress versus deformation. From the constitutive relation in Eq. (15), we can write the analytical expression
for the Cauchy stress component� 12 D � F12. For four different values of applied shear stress, we plot the numerical
results (scatter) against the analytical solution (solid line) in Fig. 8(b). We observe an excellent agreement between



L. Foucard et al. / Comput. Methods Appl. Mech. Engrg. 283 (2015) 280–302 295

(a) Analytical and numerical curves for stress
versus deformation gradient.

(b) Percentage error in elastic body mass with pseudo
time (iteration) steps.

Fig. 7. Validation and error analysis of numerical results from the CEL formulation for uniaxial tension test.

–606–604–6020002604606–603 –601 601 603

(a) Initial velocity variation in the domain. (b) Analytical and numerical curves for stress versus
deformation gradient.

Fig. 8. Numerical results from the CEL formulation for the shear �ow of material under applied shear traction. The results are in agreement with
theory, thus, validating our scheme.

4.3. Indentation of a rounded rectangular solid

Let us consider a rounded rectangular solid made up of the same soft material as in the previous example
(EY D 15:0 MPa and� D 0:25). The dimensions of the straight portion of the rounded rectangle is 3:5 cm� 0:92 cm
and the rounded edges are semicircles with radius 0.46 cm. The solid domain and test con�guration are chosen to
mimic a hydrogel placed onto a relatively rigid substratum, typically seen in tissue printing. The total computational
domain is 5:2 cm� 1:2 cm that is discretized using an element sizeh D 0:1 cm. Note that the computational domain
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Fig. 9. Schematic diagram of the indentation of soft solid. A Gaussian type pressure load is applied to simulate the contact between a rigid indenter
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Table 1
Percentage error in elastic body mass for different �nite element mesh
sizes for the deforming cylinder under lateral compression at equilibrium.

Element size Element in X-dir Element in Y-dir % Error

0.16 40 30 1.6
0.08 80 60 0.28
0.04 160 120 0.16

4.4. Lateral compression of a cylinder

In the previous two benchmark examples, the interface remained �at at all times. Herein, we shall consider an
example problem with a curved interface and demonstrate the ability of our formulation to handle its evolution as
the solid undergoes very large deformation. Let us consider an elastic compressible cylinder of radiusR D 0:81 cm,
with EY D 15:0 MPa and� D 0:25, which is compressed between two planes on the top and bottom. The total
computational domain is 3:2 cm� 2:4 cm that is discretized using an element sizeh D 0:08 cm. Plane strain conditions
apply and body forces are neglected. We set up the problem with four-fold symmetry about the origin. The boundary
and initial conditions for this problem are,

v2. x1; x2 D 0/ D v1. x1 D 0; x2/ D 0;
v.x; t D 0/ D 0;
OF.x; t D 0/ D I ;
J.x; t D 0/ D 0:

9
>>=

>>;
(62)

We de�ne a vertical force that is applied on the portion of interface� ; this force function is de�ned as an exponential
repulsive force to avoid penetration between the cylinder and the two compressive planes:

�
Nt.x/ D .�. x/ � d0/ exp.d0 � � . x// e2 if � . x/ � d0
Nt.x/ D
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(a) Initial interface at iterationi D 0. (b) Deformed interface at iterationi D 25.

(c) Deformed interface at iterationi D 50. (d) Deformed interface at iterationi D 112.
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