
Biomech Model Mechanobiol (2016) 15:259–278

http://crossmark.crossref.org/dialog/?doi=10.1007/s10237-015-0684-y&domain=pdf


260 F. J. Vernerey

was described in terms of both volume and density changes
inducing tissue deformation. A generalization of this concept
was then provided by Rodriguez et al. (1994) and later Klisch
et al. (2001, 2003) in order to account for cases where growth
is not necessary isotropic and can result from the presence
of several constituents. These considerations have motivated
the introduction of a so-called growth tensor that is analogous
to the classical deformation gradient tensor, and which char-
acterizes the change in shape and volume of an elementary
particle due to the addition of new material. Interestingly,
this formulation can, via a multiplicative decomposition of
an elastic and growth deformation, describe the appearance
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2 Kinematics of growth in engineering scaffolds

2.1 Continuum description of a growing multi-phasic
medium

Let us consider the situation of a deformable body, originally
contained in a closed domain �0 delimited by a boundary �0,
undergoing isotropic growth via the secretion, transport and
deposition of extra-cellular matrix (ECM) molecules within
an existing hydrated porous structure. Let us further assume
that the characteristic length scale of each constituent (cells,
pore size) is infinitesimally small relative to the size of a
tissue so that the latter can be viewed as a continuum, and
more specifically, as a deformable (fluid–solid) multiphasic
medium. In �0, a material particle P (with position vector
X in an appropriate Cartesian coordinate system) is assumed
to be composed of n different fluid or solid phases, each
characterized by their nominal concentration Cα , i.e., by the
number of moles of α−constituent per reference volume of
mixture. One can alternatively use the nominal volume frac-
tion, i.e., the volume of a constituent per reference volume,
given as:

�α(X, t) = ναCα(X, t) (1)

where να is the true molar volume of the constituent. For
simplicity, we assume here that all constituents are made
of incompressible matter, that is, the specific (molar) vol-
ume να does not change over time, regardless of their solid
or fluid state. Note that this concept is to be understood
within the context of homogenized equivalent constituents
which enables us to avoid complications associated with
incompressible constituents in their natural state (Humphrey
and Rajagopal 2002). To characterize the physical state of
the mixture, it is convenient to decompose these volume
fractions into contributions from solid and fluid phases.
Omitting the arguments (X, t) for clarity, we write �� =∑n

α=1 ��
α and � f = ∑n

α=1 �α where a superscript �

denotes the solid state, while no superscripts are used for
fluid phases. Assuming that the mixture is saturated, it can
be shown that the nominal volume fractions must verify at
any time:

n∑

α=1

(
��

α + �α

) = J. (2)

where we introduced J = V/V0 as the volumetric defor-
mation of a material particle (V and V0 being the current
and initial infinitesimal volumes of a particle, respectively).
From (2), it can be inferred that at the reference (or initial)
time t = 0, the volumetric deformation verifies J = 1 and
we obtain

∑n
α=1

(
��

α(X, 0) + �α(X, 0)
) = 1.

2.2 Kinematics of deformation during growth

We now focus on characterizing the deformation of solid con-
stituents. It is clear here that the notion of a physical particle is
questionable since material is constantly added or deleted in
time. Nevertheless, if growth is a continuous function of time,
one can define such a point as long as the solid concentrations
do not vanish at all times. Adopting a constrained mixture
approach (Humphrey and Rajagopal 2002), the motion of all
solid constituents is described by a unique continuous and
differentiable function χ (X, t) that maps the reference posi-
tion vector X of a particle into its current configuration x.
The overall deformation of a point, relative to its reference
state is thus represented by the deformation gradient:

F(X, t) = ∂χ(X, t)/∂X (3)

Deformation in a growing body generally occurs due to the
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Fig. 1 Decomposition of deformable particles deposited at differ-
ent times on an underlying material that undergoes a deformation
F(t) = diag(λ(t), 1, 1). In this illustration, we consider three parti-
cles depositing with a natural configuration λ̄
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solid constituents follow the same motion. Finally, within the
context of finite deformations, it is preferable to express these
fluxes per cross-sectional area of material in its undeformed
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where kB is the Boltzmann constant and φα = �



A mixture approach to investigate interstitial growth in engineering scaffolds 267

4.2.2 Transport

In contrast to production, the phenomenon of matrix trans-
port is directly related to the physical state of the surrounding
medium, and more specifically its permeability. For a low
permeability, transport is totally hindered while the opposite
holds for high permeability. Without losing generality, per-
meability can be related to the porosity φ f = � f /J of the
mixture (Nabovati et al. 2009), the radius of gyration rs of
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Fig. 4 Model of growth previously proposed in the literature (Klisch
et al. 2003). When the nominal concentration Cα of a growing phase is
smaller than the natural concentration Cn

α in the absence of surrounding

medium, growth occurs at constant volume. However, when the con-
centration Cα is equal to C
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total volumetric deformation J remains equal to unity. In
this situation, (41) and (44) imply that the states of stress and
strain becomes negative since 1/2((Cn

α/C�
α(t))2 − 1) < 0

when C�
α(t) > Cn

α . One therefore observes the appearance
of compressive residual stresses, and a resulting change in
mass density, as the material grows without volume change.

4.4 Elastic potentials

In Eq. (15), it was shown that the elastic energy stored of a
growing body can be additively decomposed into contribu-
tions from its different solid phases, all possessing their own
potential energy depending on deformations and mechani-
cal properties. This decomposition requires the definition of
elastic potentials ψα , defined per unit reference volume of
pure constituent; two examples are given here for our poly-
mer matrix system.

4.4.1 Polymer scaffold elasticity

Following the classical Flory-Rehner model for the elastic
energy of a hydrogel (Flory 1953), the elastic potential of the
polymer network, with reference in its dry state, reads:

ψp(Ed
p) = ρRT

νp

(
tr(Ed

p) − ln(Jd
p )

)
. (45)

Here ρ represents the molar ratio of cross-links and polymer
chains, while νp is the molar volume of the polymer. We also
note that the Green–Lagrange strain Ed

p is measured with
respect to the dry (or unswollen) polymer state; this motivates
the use of the upper-script d
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constituent at the time of deposition on the growth dynamics
of a biological tissue. We here propose to emphasize its role
on both growth and the buildup of residual stresses within
the material. Referring to Sect. 4.3, we consider three main
types of depositions:

• Case 1: The deposition strain J̄ is independent of the time
of deposition. In this context, we investigate situations in
which the matrix deposits in (a) a stress-free configura-
tion, i.e.,
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Fig. 6 Evolution of the
volumetric Cauchy stresses
σ̂α = σα/π(0), osmotic
pressure π̂ = π/π(0), matrix
concentration Ĉ = C/Cmax and
overall volume change J for
different critical pressures for
cell-mediated matrix production

5.2.1 Problem reduction

Using a spherical coordinate system (R,�,�) and assum-
ing central symmetry, it can be found that displacements only
occur in the radial direction (Fig. 8). Denoting by r the coor-
dinate of a point that was originally in R, one can derive the
following expression for the deformation gradient:

F = diag

[
∂r

∂ R
,

r

R
,

r

R

]

(59)

For simplicity, we assume here that the matrix deposits at
a configuration F̄m = F, i.e., Fm = F at all time. In other
words, the Green–Lagrange strain in the polymer and solid
matrix is the same and has the following nonzero compo-
nents:

ERR = 1

2

[(
∂r

∂ R

)2

− 1

]

E�� = E�� = 1

2

[( r

R

)2 − 1

]

(60)

in the radial and circumferential directions, respectively.

5.2.2 Mechanical equilibrium and residual stresses

When no body forces are considered, the momentum equa-
tion (19) becomes:

∂ PRR

∂ R
+ 2

R
(PRR − P��=
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