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in the form of grains, fibers or different size particles. In this work, we propose to use the multi-scale
micromorphic theory (



2. Multi-scale model
2.1. Ductile fracture mechanisms

In the study of ductile fracture mechanisms, the distinct role of primary and secondary particles can be
deduced by observation of the fracture surface. Because bonding at the particle-matrix interface is stronger



2.2. Multi-scale decomposition of the microstructure

As noted above, ductile fracture in high strength steel alloys is a highly nonlinear phenomenon that
encompasses several mechanisms across three scales: macro-scale, scale of primary particles, and scale of
secondary particles. Following Vernerey et al. (2007) it is possible to associate to each scale of analysis an
independent kinematic variable, arising from the introduction of material domains centered on a material
point x. The three kinematic variables and the associated nested domains shown in Fig. 2 are defined as
follows:

the macro-velocity v






homogenization techniques (Nemat-Nasser and Hori, 1999



Note that this operation introduces length scales ¢* and ¢ in the model and can be interpreted through
Eqg. (6) as a measure of the lever arm of the stress couples.

3.2. Elastic response

In this study, an additive decomposition of the generalized rate of deformation into an elastic part A® and a
plastic part



In the following, we present a derivation of the yield function and an evolution of internal variables
associated with each scale, starting at the macro-scale. While the macroscopic plastic response is determined
based on hierarchical homogenization techniques described in Hao et al. (2004), the microscopic and
submicroscopic constitutive relations remain empirical but physically motivated.

Note that although the material’s microstructure is typically anisotropic and discontinuous at small scales,






where by is a function of the debonding stress s°. At the onset of a void-sheet mechanism, micro-stresses lie on
the yield surface, implying that F* % 0. Using Egs. (20) and (A.16), we can write

By ¥4 0Bgq D @B Pit paepvite - (21)
For simplicity, we assume that By is a linear function of E*
Bj ¥ Bjo1 p h'E'e. (22)

The coefficient h! remains an arbitrary constant and gives the sensitivity of micro-stress softening with the
amount of micro-deformation. Computations have shown that the behavior of the solution exhibits
insignificant variations when we modify the value of h*. In the following, we consider perfect plasticity for the
inhomogeneous response at the micro-scale; in other words, we choose h* ¥4 0.

3.3.3. Submicroscopic plastic response

The submicro-stress and submicro-stress couples are a result of inhomogeneous stresses induced by
microvoid growth. At this scale, plastic instability occurs when the matrix material fails to carry stress
moments after the onset of microvoid coalescence (or instability of ligaments between microvoids).
Submicroscopic plastic deformation can subsequently be defined as the plastic deformation of the matrix
material after the onset of void coalescence (necking of ligament). The yield function is written in the form of
J, flow plasticity modified to account for the effects of higher order stresses:
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where Béq is the overall eguivalent micro-stress and Bf, is the micro-yield stress. The equivalent stress and rate
of plastic micro-str%i‘n E" are written in the form:
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techniques. One of the critical feature to capture from cell modeling is the strength of the interface between
particles and matrix material. For this, we used the cohesive model described next.

3.4.1. Matrix/particles cohesive law
The interfacial debonding energy at Fe-TiC interface for secondary particles and Fe-TiN interface for



3.4.2. Hierarchical homogenization

The hierarchical framework used in this study is depicted in Fig. 6. Homogenization of the material at the
level of secondary particles is first carried out to produce a homogenized constitutive relation that can be used
to model the material between primary particles. A cell model at the scale of primary particles is then used to
determine properties of the material at the macro-scale. At each scale, we introduce a representative cell O in



plastic potential F' (Gurson, 1977) with adjustable parameters as follows:
SO 2 0l
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where the prime denotes the scale of secondary particles. Here, sy, is the hydrostatic stress and s’ is the
equivalent stress. The determination of constants gy, g’y and q'; is described in Appendix C. The evolution of
the microvoid volume fraction f is decomposed into a nucleation term, growth term and coalescence term.
The evolution of each of these internal variables is described in Appendix A.1. Note that the function F° is
only used temporary in order to determine the macroscopic material response. It is not used in the multi-scale
framework described in previous sections.

The macroscale yield function is then determined by considering the unit cell containing a distribution of
randomly distributed primary particles in a matrix whose response is given by Eq. (29). A similar averaging
operation is performed to lead to the form of the yield function (12) and the evolution of internal variables
given in Eq. (14).

4. Implemented multi-scale model results
4.1. One-dimensional analysis

The behavior of the three-scale micromorphic steel model is first investigated in a simple one-dimensional



4.1.1. Three-scale continuum solution

In Fig. 8, the evolution of the profile of macroscopic logarithmic tensile strain is plotted as a function of
position along the bar. Each of the three distinct stages is observed in failure of the bar based on the size of the
corresponding localization region.

Stage 1 corresponds to localization of the deformation as a result of macroscopic material instability (due
to the nucleation of voids from primary particles in the center of the bar). The width of the localization
zone is due to micro- and micro-stress couple that are associated with the length scale .

Stage 2 corresponds to the second level of localization, associated with microscopic instability. At this
stage, due to sufficient plastic strains and voids growth around the primary particles, microvoid nucleation






Two computations are performed. First, a direct numerical simulation (DNS) of the shear test with explicit
modeling of two populations of particles and second, a computation of the equivalent three-scale






Fig. 12. (a) Snapshots of the plastic deformation of the shear specimen with explicit microstructure; (b—d) snapshots of the plastic



The evolution of effective plastic strains at macro-, micro- and submicro-scales are depicted in Fig. 15 for
different times. Three stages of material failure are shown. The first stage corresponds to material instability at
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where B'; represents the acceleration of void growth in high triaxiality and B', was added to represent the
shear driven void coalescence such that:

B} %0, BY% 0 before the onset of coalescence,
B{>0, B)>0 after the onset of coalescence.
Cell modeling studies showed that the criterion for the onset of void coalescence can be expressed as follows:

f'bad, b>0, (A.10)

(A.9)

where a; ¥4 0.1222 and b, ¥ 0.1236. In other words, coalescence takes place either at high void volume
fraction or at high plastic strains. The trade-off between those quantities is given by the relation (A.10).

A.2. Homogenization at the scale of primary particles

The macroscopic yield function is written in the form:

2
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The evolutions of void volume fraction nucleating from primary and secondary particles are taken in the
following form:

7 1" p £ and £° v, £°. (A.12)

The first term " denotes the nucleation of voids around primary particles, the second £ represents the
growth of those voids under the action of hydrostatic stress and finally, ° is the coalescence term. The
coalescence stage can be explained with the void-sheet mechanism (Horstemeyer et al., 2000) as follows: as
larger voids grow, the plastic strain in the matrix material increase significantly, leading to nucleation of the
smaller population of voids. The newly nucleated microvoids are then free to grow and coalesce in the



sheet driven coalescence is on the straight line given by

fpawe bysdsSh %0, (A.16)
where ays ¥4 0.0639 and by is a linear function of the debonding stress (in GPa):
busdsSb ¥4 30.0043s° p 0.0186p. (A.17)

Egs. (A.16) and (A.17) can be interpreted as follows. Void-sheet coalescence occurs either in high volume
fraction and low plastic strain or in high plastic strain and low volume fraction. This can be explained by the
fact that both an increase of volume fraction and plastic strain have a direct influence on the strains between
larger voids. Finally, a stronger interface at the secondary particle/matrix, by postponing small void
nucleation, has the effect of delaying the coalescence.

Appendix B. Material models
B.1. Material constants for Von-Mises model

The derivation of material constants of the generalized Von-Mises plasticity model is similar to the
Drucker—Prager model presented in Section B.2 by setting a ¥ 0.

B.2. Material constants for Drucker—Prager model

In this appendix, we show the derivation of material constants for the generalized Druker—Prager model
utilized for the constitutive relation at the microscale. Let us first develop an expression for the averaged

. . . —1,dev
deviatoric and volumetric stresses B,



where the constant ¢! ¥ 1/18. Extending the idea of de Borst (1993) for the Druker—Prager model, the
material constants a® and b are now determined based on the equality of the plastic multiplier and the
equivalent plastic strain:

E'vi1t 1p2a2 (B.6)

Let us first write the plastic flow directions ! and T as follows:



uj and ul are the displacements of the nodes on the top boundary in the y; and y, directions,
respectively.
u? and u5 are the displacements of the nodes on the bottom boundary in the y; and y, directions,
respectively.

In order to apply the periodic boundary conditions, let us introduce two dummy nodes N’ and N” of
respective displacements u’ and u®. The displacements of nodes on the boundaries of the RVE are then
constrained as follows:

uf  ub e,

ul  uBvaul, c1
ul w8 vl (C.1)
uf  uf vaud.

This can be done in the commercial software ABAQUS® by using the linear constraint option. With those
constraints, only the four boundary conditions on the dummy node need to be prescribed and the average true
strain in the RVE is then given by the following relation:
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Moreover, the linear constraint implies that the total reaction forces on the boundaries of the RVE are the
forces f and Y on the dummy nodes. The average Cauchy stress in the RVE defined as the boundary traction
per unit area is therefore written as follows:

Ya (C.2)
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C.2. Constant stress ratio with periodic BC



This is done via the definition of a user-element in ABAQUS® (subroutine UEL) and the subroutine
DLOAD.

The procedure consists of computing the average stress S»» during the simulation and applying the pressure
p on the sides such that we have:

p Y4 Rs)). (C4)

However, as the RVE is displacement controlled, the stress s, is not explicitly known during the simulation
and must be determined through a special procedure. The latter consists in defining a user element subroutine
that computes the stress s,, at each time step and pass it to the subroutine DLOAD that applies the resulting
pressure p on the left and right boundaries.

Referring to Fig. 17, we first introduce an additional dummy node N, located straight above node N’ such
that the user element consists of two nodes and three degree of freedom as follows:

the displacement u, of node N;
the displacements u’; and u’, of node N’

The procedure consists of applying the vertical displacement boundary condition on node N instead of N’
and linking the two nodes with a stiff spring of stiffness K. The tensile force t', on node N’ is therefore given by

th Ya Kdup  ubb. (C.5)
It is then straightforward to obtain the stress s,, with the knowledge of u’;,
t) Kdu, 02D
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