Published: August 19, 2011

group. S_{2D} values obtained using this method of analysis "lter out" the e ect of undulations imparted onto the GNR assembly becaue of alignment imperfections in the SWNT substrate, and indicate the degree of ordering achievable in a GNR array deposited on a perfectly aligned SWNT substrate with β (r) = constant. The values of S_{2D} listed in Table 1 further illustrate the

structured surfaces like walls of channels, protrusions and corners, help colloidal particles to attain well-de ned positions and orientations. In the case of anisotropic colloids like GNRs, in unidirectional nanochannels created by SWNTs, alignment leads to reduction in their excluded volume by $\sim (L-2R)A$, where A is the surface area of channel-like substrate nanostructures, L is the length of a GNR, and R is its radius, as depicted in Figure 5b.

Finally, as GNRs deposit on the substrate, van der Waals interactions with individual SWNTs and SWNT bundles strongly a ect their orientation, as depicted in Figure 5c. Aligning with SWNTs in the substrate allows GNRs to maximize their area

./0 1	%	п		%	-
	·	·	·	·	·

'' ! %

\$