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single fixed orientation of the particle relative to the laser propagation direction, and in some 



 
Fig. 1. Schematic of dynamic holographic optical tweezers. The output beam (red) from a 
ytterbium-doped fiber laser is expanded with a telescope (L1 and L2) to overfill the pixel array 
of a reflective spatial light modulator (SLM). The reflected beam size is reduced with a second 
telescope (L3 and L4) to fill the back aperture of a microscope objective (MO). A rotatable 
halfwave plate (HWP) controls the linear polarization state of the beam and the dichroic mirror 
(DM) is used to direct the beam into MO while allowing visible light (yellow) transmitted 
through the sample to travel to the CCD camera. A polarizer (P) located before the condenser 
(CD) and an analyzer (A) mounted below the sample allow for observations under crossed 
polarizers such as the images of a square colloid (top) and a triangular colloid (bottom) in 5CB 
shown on the left (scale bar: 5 � m). The SLM is capable of generating Laguerre-Gaussian 



4. Results and discussion 
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Whether the particles are trapped upright with an l = 0 Gaussian trap or in-plane with a l �  
0 optical vortex, they can be translated either by steering the trap within the field of view 
using computer-controlled holography or translating the sample using a stage. At the laser 
powers used in these studies (�  20 mW), the maximum velocities achievable before viscous 
drag forces pull the particle out of the trap are limited to � 1-2 � m/s, because of the high shear 
viscosity of 5CB (�  ~100 cP). Using a drag coefficient �  � 2x10� 6 kg/s determined in previous 
experiments [18] for similar square shaped colloids in 5CB, we estimate a maximum optical 
force without viscous drag pulling the particle out is � 1-2 pN. Rotating the polarization of the 
beam parallel to n0 results in the colloid being pushed out of the trap for all shapes and any l, 
similar to the case of spherical colloids having refractive index intermediate between the 
ordinary and extraordinary indices of the LC which can be repelled or attracted to the laser 
trap by controlling beam’s polarization [22]. Furthermore, in isotropic solvents, we cannot 
stably trap similar colloidal particles while keeping their long axes parallel to the focal plane 

http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-19-19-18182-2


 

	 

	 
 	 
 � �

	 


2 2

22 2

2

2

exp exp
2

exp 2 1 arctan / exp

2 2
1

l
p

r

r

l

p l
p

ikr z r
E

z z

i p l z z il

r r
L




�


 


� � � �� �
� �� � � ��� � � �� �

� � � �� �� �

� � � �
� � � � � �

� �� �

  (1) 

where l and p are mode indices, k=2� n/�  � 8� 10� 3nm� 1 is the wave number using a refractive 
index n � 1.5 and vacuum wavelength �  = 1064 nm, � (z) = � 0[1 + (z/zR)2]1/2 is the beam waist 
at a distance z away from the focus along the optical axis, zr = � n� 0

2/�  is the Rayleigh length 
and Ll

p(x) is a Laguerre-Gaussian polynomial [29]. 
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that these strategies can be extended to other types and shapes of colloids as well as other 
anisotropic complex fluids such as surfactant or macromolecular based lyotropic liquid 
crystals, wormlike micellar fluids, and polymer solutions. Furthermore, employing other types 




