HEELEN BACH

3

II. MATERIALS, METHODS, AND TECHNIQUES

A. Dispersion of gold nanoparticles in lyotropic LCs

GNRs of various sizes were examined. Comparatively large, polymer coated GNRs (Nanopartz Inc.) with a mean diameter of 40 nm and mean length of 73 nm are used as supplied. Smaller GNRs with a mean diameter of 20 nm and mean length of 50 nm were synthesized according to Ref. [29]. Gold nanocubes and gold "nanostars" were synthesized according to Refs. **3**(0,31], respectively. Gold nanoparticles are functionalized by thiol-terminated methoxy-poly(ethylene glycol) (mPEG-SH) for colloidal stability. The composite of mPEG-GNRs and lyotropic LC is prepared based on a ternary lyotropic LC of sodium decyl sulfate-decanol-water (SDS–1-decanol–water) with a known phase diagram [A calamitic nematic $\mathbb{N}_{\mathbb{C}}$) lyotropic LC was prepared using a composition of 37.5 wt% of SDS, 5.5 wt% of 1-decanol (both

FIG. 2. (Color online) (a) SEM image of gold nanocubes. (b) Optical microscopy image of a dispersion of gold nanocubes in 5CB. The inset shows a vial with the gold nanocubes-5CB dispersion. (c) Polarization-independent extinction spectrum of gold nanocubes in 5CB. (d)

FG 3. (Chb) (a) POM ingfamthet B-5 CB jakitup al-hyshe (b, c) Iniarching fa KBs 5 CB jachirch (c) POM ing 6B-5 CB phi ha PIDS nix (e, f) Iniarching 6Bs 5 CB jabaithrid thity pirain pla

nthpálarntillen kelly 4 (g) Inatiokigé, fieatybyhbigadodyóttábylében N(r) 6N_C, as <mark>igadatolias</mark> Gripian beabladdbybg (Er hydethicbedybb obazbezephtioblybh

5). Polyn N pale

N_C lipitailing(b) parlad

FG 5. (Chb) (a) A POM jejpća ji viji kolivelnika ija jetatika 5 CB

FIG. 6. (Color online) (a) A schematic of the setup used to measure the polarization-dependent transmitted spectra; the arrow indicates orientation ofN_0 set by the shear force. (b) Experimental extinction spectra of GNR_S int 4.7×10^{58} M. (c) Simulated extinction coef cients for the same concentration of GNR_S int 4.7×10^{58} M. (c) Simulated extinction coef cients spectral dependencies of extinction, absorption, and scattering coef cients for two orthogonal polarizations of incident light and $g_{RR} = 1$. (d) Computer-simulated spectral dependencies of extinction, absorption, and scattering coef cients for two orthogonal polarizations of incident GRR_S interval dependence of effective-medium refrestive indices and its anisotropy. (f) Calculated spectral dependence of effective-medium refrestive indice n and n.

at much lower concentrations or volume fractions of large GNRs. Third, the relative contribution of scattering to the total extinction (^{absy} ^{ext}) increases with increasing the effective volume of GNRs. For example, this ratio of GNRs of 20 nm in diameter and 50-nm long is12%, while it increases to 52% for GNRs of 40 nm in diameter and 73 nm in length. This property makes dispersions of large GNRs good candidates for applications based on light scattering.

The quality of orientational ordering of GNRs in LC can be characterized by the scalar order parameter de ned as

PHYSICAL REVIEW 889, 052505 (2014)

the absorption coef cient ^{abs} in Fig. 6(d): n () = n^{offset} = $[1/(2^{2})]$ P.V. ² abs()/[1 Š (/)²]d , where P.V. is the Cauchy principal value of the integral. The integration ranges from 1 = 450 nm to 2 = 900 nm. The used values of offset extraordinary and ordinary indices ^{offset} are based on \bar{n}_{LC} = 1.39 and the intrinsic optical anisotropy $_{LC}$ = Š 0.006 ± 0.001 of the N_C. The effective-medium optical anisotropy of the GNR \mathbf{M}_{C} composite is much larger than the intrinsic birefringence of N_C and changes sign at around the longitudinal SPR peak waveleng [frig. 6(f)].

IV. DISCUSSION

A. Strong anchoring and elastic alignment

In general, the alignment of rod-like or other nonspherical particles dispersed in the nematic LC could be caused by GNR-LC matrix interaction in "strong," "weak," or nite surface anchoring regimes. In the strong anchoring regime, the GNR-matrix interaction is expected to be mediated mostly by the minimization of elastic free energy due to director distortions induced by nanoparticles while having the director at LC-GNR surfaces follow the tangential boundary conditions [21]. In contrast, in the regime of weak surface anchoring, the director distortions in the LC bulk and energetic cost due to them can be neglected as the director meets the GNR-LC surface at different angles, so that the anisotropic nanoparticle orientation is determined by minimization of the

N at S_{G} = 0.71. () Od r_{f} .

is a bifletally between N addressing between N addressing and N addressing between the shift of the shift of

$$S_{G} = P_2 (\mathbf{s} \ \mathbf{f}_{\mathbf{s}} (\mathbf{s}) \mathbf{\dot{s}} d$$
$$= 3 \mathbf{p} (\mathbf{s} \ \mathbf{f}_{\mathbf{s}} (\mathbf{s}) \mathbf{\dot{s}} d$$

V. CONCLUSION

- [39] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, [44] A. V. A. Pinto and L. Q. Amaral, J. Phys. Chem94, 3186 J. Phys. Chem. B10, 7238(2006).
- [40] E. D. Palik, Handbook of Optical Constants of Solidacademic, New York, 1998).
- Kikkawa, Phys. Rev. Lett93, 037404(2004).
- [42] E. Charlet and E. Grele P.hys. Rev. 578, 041707(2008).
- [43] C. J. Smith and C. Denniston, Appl. Phys101, 014305(2007).
- (1990).
- [45] P.-G. de Gennes and J. Proshe Physics of Liquid Crystals (Clarendon, Oxford, 1995).
- [41] M. F. Islam, D. E. Milkie, C. L. Kane, A. G. Yodh, and J. M. [46] P. van der Schoot, V. Popa-Nita, and S. KraljPhys. Chem. B 112, 4512(2008).
 - [47] A. M. Ribas, L. R. Evangelista, A. J. Palangana, and E. A. Oliveira, Phys. Rev. E51, R5204(1995).