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from the contrast of refractive index between uniform align-

ment of the far field and the LC distortions around NB par-

ticles, as well as the dependence of the effective refractive

index distribution on the trapping beam’s polarization.19

Consequently, the average trap stiffness at a laser power of

P¼ 32 mW in a planar cell (�3.5 pN/lm) was found to be

different from that in a homeotropic LC cell (�1.7 pN/lm).

Additionally, the NB nanoparticle can be elastically attracted

and trapped, as well as manipulated by use of local melting

of the LC. In addition to the optical trapping of NBs, we

observed a transfer of the angular momentum from the vor-

tex LG beam to the nanoparticle resembling that discussed in

earlier literature reports.20 The NBs rotate around the beam’s

propagation direction [Fig. 3(c)]. The direction of rotation

depends on the topological charge l of the beam, being

clockwise for negative l and counterclockwise for positive l
[Figs. 3(c) and 3(d)]. The rate also shows dependence on

laser power and l [Fig. 3(d)]. The rotation rate increases with

increasing laser power and with decreasing the integer jlj> 0

and is, for example, �0.5 Hz at P¼ 40 mW and l¼62

[Fig. 3(d)]. The angular velocity is dependent on the angle

between the line connecting the centers of the LG beam, NP

and n [Fig. 3(c)].21 This dependence is caused by the anisot-

ropy of LC’s viscous drag forces as well as by the complex

dependence of laser trapping forces on the particle’s position

in such an experiment. The controlled trapping and dynamics

of NB particles allow us to effectively use them as movable

nanoantennae for the enhancement of weak spontaneous and

stimulated Raman scattering signals, as discussed below.

B. Enhancement of Raman signals of 5CB
by assemblies of NB particles

The ability to optically trap NB nanoparticles allows us

to move them through the studied medium either through

dynamically changing holograms displayed by the SLM or

with the help of a motorized stage spatially translating the

sample. Since the near contact-assembly of NBs yields even

stronger field enhancement in the inter-particle regions, we

can optically organize multiple particles into side-by-side

assemblies, which in LCs are then held together by elastic

forces, as shown in Figs. 2(d)–2(g). The electromagnetic

field simulation for assemblies of NB particles [Figs. 2(b)

and 2(c)] shows a strong electromagnetic field enhancement

at the sharp edges of the particles, especially in the inter-

particle region. The higher field enhancement at the adjacent

edges of the particles and in the region between them is due

to the coupled electromagnetic field emerging from the

dipole and quadrupole interactions between the particles.

Interestingly, the electromagnetic enhancement depends



When calculating the enhancement factor, to mitigate the

influence of temporal fluctuations in the intensity due to

positional and orientational fluctuations of the particles on

the enhancement, each Raman spectrum was collected over a

relatively long integration time of 0.5 s and then 1000 of

such spectra were averaged using the EMCCD software. It is

clearly evident from the comparison of Figs. 4(a) and 4(b)

that the Raman lines corresponding to 5CB are enhanced

considerably in the presence of NB. A close inspection of

Fig. 4(b) reveals additional lines, which do not correspond to

5CB. In order to investigate the origin of these additional

lines, a Raman spectrum was collected from NB particles

spin coated on a glass substrate, Fig. 4(c), which indicates

that these additional lines originate from the NSOL capping

ligands of NBs. As compared to regular 5CB spectra, the

average enhancement factor of Raman signal from 5CB mol-

ecules in the presence of NB particles is �500, although the

values varies from 200–700 for different NB particles.

The calculations of this factor were performed by taking the

ratios of integrated intensities of SERS signal corresponding

to the characteristic line at 1158 cm�1 collected from the NB

location and Raman signal collected after moving the beam

away from NB particles in LC medium, normalized with

respect to the number of 5CB molecules in the excitation

volume, as commonly done in SERS literature and described

in more details elsewhere.7 The achieved enhancement factor

is somewhat limited by the fact that the Raman spectra meas-

ured from the NB locations are convoluted because of the

larger volume of the excitation beam as compared to NB

assembly size, which is only about several hundreds of nano-

meters along the light propagation direction. The electro-

magnetic field enhancement is limited to a sample region

very close to the NB particles and decays rapidly with the

distance [Figs. 2(b) and 2(c)]. Consequently, Raman signals

from 5CB molecules that are farther away from the NB par-

ticles are practically unaffected by the field enhancement,

adding up together with the SERS maximally enhanced sig-

nal of 5CB molecules near NB and yielding the Raman spec-

tra shown in Fig. 4(b). The enhancement factor calculated

from the simulations was found to be dependent on the polar-

ization of the incident electromagnetic wave, whether it is

parallel or perpendicular to the line joining center of the par-

ticles. The calculated values of enhancement factor based on

the simulated values corresponding to these two polarization

were 115 and 194. The higher values of the enhancement

factors observed experimentally can be explained by such

factors as (1) the waist of the beam tightly focused by the

high-NA objective is slightly smaller than the diameter of





polymer chains (refer to dark diamond and star symbols) as

depicted in Fig. 7(a). Higher intensities of the Raman lines

of the polymer chains in Fig. 7(c) compared to Fig. 7(b)

reveals higher concentrations of polymer chains inside LC

defects as compared to the bulk regions away from defects.

This indicates that the polymer chains segregate into the iso-

tropic regions of the LC defects during the photo-

polymerization process, which is natural as they represent a

lower cost of free energy when localized within defects as

compared to the uniformly aligned LC host in which they

induce energetically costly elastic distortions. This result

shows that plasmonic metal nanoparticles are suitable for

nanoantennae-like probes with the potential applications in

exploiting nanoscale composition of soft matter composites.

IV. CONCLUSIONS

We have developed an experimental tool for spatially

resolved characterization of chemical composition in soft

matter systems by using surface-enhanced spontaneous and

stimulated Raman scattering with simultaneous optical

manipulation of particles with suitable nanometer-sized

structures. These structures produce large surface electro-

magnetic field enhancements and, as such, can act as opti-

cally and elastically assembled plasmonic nanoantennae for

probing chemical composition. The optical trapping enables

us to manipulate these nanoparticles through a soft matter

medium with nanometer precision. We have demonstrated

the use of such a system for studying the surface-enhanced

Raman scattering of LC molecules with gold nanoparticles

dispersed within the medium. Finally, we have also demon-

strated probing of chemical inhomogeneity in the LC me-

dium by using the optically trapped plasmonic particle as a

probe of the Raman signal using the SERS effect.
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