Hopf Solitons in Helical and Conical Backgrounds of Chiral Magnetic Solids

Robert Voinescu, 1,† Jung-Shen B. Tai (戴 身), 1,† and Ivan I. Smalyukh 1,2,3,* 1 De a t e t f P . c , U ve t f C ad , B de , C ad 80309, USA 2 Mare a SceceadE ee P a , S ft Mare a Reeac Ce re ad De a t e t f E ect ca , C re , ad E e . E ee , U ve t f C ad , B de , C ad 80309, USA 3 Re e^{W} ab e a d S ra ab e E e . I tt re, Nat a Re e^{W} ab e E e . Lab at . ad U ve t f C ad , B de , C ad 80309, USA

(Received 14 April 2020; accepted 6 July 2020; published 27 July 2020)

Adopting the field configuration of liquid-crystal heliknotons in Ref. [17] as the initial condition of $m\tilde{o}r^p$, we minimize free energy and find that the individual 3D-localized magnetic heliknotons in the bulk helical background at no fields or anisotropies [Figs. 1(a)-1(d)] as metastable states with energy E_0 ¼ $8.58J\lambda$ when taking the helical background state as the reference. Preimages of constant $m\tilde{o}r^p$ corresponding to \mathbb{S}^2 points are closed loops interlinking once with other individual preimages. This geometric analysis allows the assignment of the Hopf index \mathbb{Q} ¼ 1

field q_0 [Fig. 1(e)]. Preimages of \mathbb{S}^2 points of constant polar but different azimuthal angles form deformed tori nested around the preimages of north and south poles [Fig. 1(f)]. The two sets of nested tori are separated by the preimages of points on the equator of S2, representing the region occupied by the far field. In a heliknoton embedded in a helical background, preimage tori corresponding to points of the same latitude on either hemisphere of \mathbb{S}^2 intertransform by a π rotation along \boldsymbol{q}_0 with respect to the geometric center of the heliknoton. This symmetry is broken when a magnetic field is applied along q_0 and the helical background transitions into the conical state with a cone angle 6 1/4 cos⁻¹H [Fig. 1(a)]. As a result of such helical-to-conical transition in the far field, two preimage tori of polar angles 1 and $_2$ ($_1$ < $_c$ < $_2$ < π =2) transition from being both coaxial with the north pole's preimage to forming a noncoaxial link of preimage tori, with the overall $\pi_3 \tilde{O} \mathbb{S}^2$ topology of $m\tilde{o}r^{\flat}$ [Fig. 1(g)]. Thus, heliknotons can exist in a conical field background of varying cone angle, though we could stabilize heliknotons only up to $\tilde{H} \approx 0.2$. Beyond this field, the high-energy cost of regions with $m \partial r^{\flat}$ antiparallel to H overcomes the topological barrier, transforming the Q $\frac{1}{4}$ 1 heliknoton to the topologically trivial conical state through nucleation and propagation of singular defects (Bloch points) [35].

While heliknotons are fully nonsingular structures in $m \delta r^{\flat}$, nontrivial topology characterizes not only this material field. Singular vortex lines in nonpolar $q \delta r^{\flat}$ form three mutually linked loops, different from the trefoil-knot vortices of liquid crystal heliknotons [17,30] [Fig. 1(h)]. We also calculate the emergent field $\delta B_{\rm em} P_{\rm i} = \hbar^{-ijk}$

energy than the topologically trivial structures but persist as metastable states within a broad parameter range (colored green in Fig. 3). Within metastability regions, these solitons are often geometrically deformed by fields and anisotropies (Fig. 4) [30]. Interestingly, this stretching preserves topology

parameters, can be large (ΔE_{23} = $k_BT \approx 10$ and T ~1/4 ~200 K for FeGe) or comparable (ΔE_{23} = $k_BT \approx 0.7$ and T ½ 25 K for MnSi) to thermal energy (see Supplemental Material [30]). With the formation of tetramer and octamer configurations, the free energy per heliknoton is further reduced. Within the heliknoton oligomer, the isosurfaces of perturbation in $q \delta r$ of individual heliknotons join into a single surface and the overall Hopf index becomes the sum of that of the solitonic constituents [Figs. 5(d) and 5(e)]. Thus, a heliknoton oligomer resembles a single high-charge heliknoton molecule or, in a different analogy, a high-baryon-number nucleus [42]. The complex configuration of the stabilized octamer cannot be straightforwardly expected on the basis of dimer or tetramer configurations, suggesting that the emergent crystalline assemblies of heliknotons could be complex. A systematic study of all possible symmetries and lattice parameters, for different external fields and magnetocrystalline anisotropies, could potentially reveal the energy-minimizing asse. t the emer[20] X. Zhang, Y. Zhou, and M. Ezawa, Sci. Rep.